Focus

Machine Learning and Artificial Intelligence

Articles, podcasts, talks, and more about Machine Learning and Artificial Intelligence.
Blog Post

A natural language calculator

In my prior post I’ve written about how to run a chat with a large-language-model on your PC. This time I want to focus on scripting this with Node.js and letting the AI- and the “normal”-world interact with each other.

Podcast

Large Language Models

Verändern sie alles?

Blog Post

AI Tools in Business Environments

and which also make your everyday life easier

Podcast

Women in Tech: Larysa

Eine Frage des Outfits

Blog Post

Running an AI Chatbot on Your Own PC

Llama.cpp, gpt4all and others make it very easy to try out large language models. Here’s a short guide to trying them out under Linux or macOS.

Blog Post

How to use Apple Shortcuts to integrate GPT 3.5 and 4 in macOS and iOS

Hey GPT, what’s this email about?

Blog Post

How AI will replace my job

In late 2022, I decided to try to use ChatGPT, an AI language processor, to do some of my daily software development work. Now, only a few weeks later, I am convinced AI might soon do most of my current work, at least measured by hours.

Article

KI-Systeme: MLOps, Model Governance und Explainable AI sichern robusten Einsatz

Compliance und Vertrauen: Mit den richtigen Tools und Prozessen lassen sich KI-Systeme wirksam kontrollieren und im Einklang mit rechtlichen Vorgaben betreiben.

Article

Fairness and Artificial Intelligence

Why Metrics Are Not Enough

Article

Ethics and Artificial Intelligence

Artificial intelligence is forcing its way into many fields of application. Now it is important that it works in a responsible, secure, and transparent way. The regulation of AI systems is a legal, societal, and technical topic that demands broad awareness and that will become increasingly important in the years to come.

Blog Post

Das Test-driven Development für eine Conversational AI

Anlässlich meines kürzlichen Wechsels vom Student zum Consultant schreibe ich in diesem zweiten Blogpost über die Thematik meiner Masterarbeit.

Article

Machine Learning Security – Teil 2

Eine neue Herausforderung

Article

Machine Learning Security – Teil 1

Machine Learning kommt immer mehr in sensiblen Entscheidungssystemen zum Einsatz. Dies bringt nicht nur neue Möglichkeiten, sondern auch neue Schwachstellen mit sich, die gezielt von Angriffen ausgenutzt werden können. In Teil 1 dieses Artikels navigieren wir uns Stück für Stück durch die ML Security Taxonomie und nehmen die Perspektive des Angriffs ein.

Security Podcast

Machine Learning Security

„Aus großer Kraft folgt große Verantwortung”

Podcast

Technologiemonster

Welche Konsequenzen hat unser Handeln?

Article

What tracks do we leave behind with technology?

Bei INNOQ setzen wir uns immer mehr mit KI und Machine Learning auseinander, allerdings mit ihrem sinnvollen Einsatz bei unseren Kunden und Projekten. Beste Voraussetzungen also für einen spannenden Diskurs.

Article

MLOps: You train it, you run it!

Data Science, Machine Learning (ML) und Artificial Intelligence haben in den letzten Jahren einen wahren Hype ausgelöst und viel Aufmerksamkeit in der Industrie bekommen. Man versucht mit Machine Learning Methoden entweder die Produktivität der Nutzer oder die Interaktivität der Applikation zu steigern. Zahlreiche Data Science Teams verbringen ihre Zeit damit Machine Learning Modelle zu trainieren. Allerdings beobachten wir zwei Arten von Problemen, die in der Praxis entstehen. Entweder schafft es die Mehrheit der ML Modelle nicht in ein Softwareprodukt eingebunden zu werden oder das Model Deployment nimmt zu viel Zeit in Anspruch.

Podcast

MLOps

Entwurf, Entwicklung, Betrieb

Article

Machine Learning Daten in den Griff bekommen

Für viele Verfahren im Bereich Datenanalyse und Machine Learning werden mehrdimensionale Arrays benötigt. Da oft mit großen Datenmengen gearbeitet wird, ist es, neben anderen Optimierungen, wünschenswert eine Array Implementierung zu verwenden, die auf hohe Performance und geringen Speicherverbrauch optimiert ist. Viele Frameworks setzen deshalb auf ndarrays von numpy oder eigene Implementierungen statt die Standard Listen- oder Arrayimplementierungen von Python zu verwenden.

Article

Pragmatisch zum Praxiseinsatz von Machine Learning in der Cloud

Die Anzahl von Publikationen zu Computer Vision, Natural Language Processing (NLP) oder Reinforcement Learning ist heutzutage gewaltig. Dabei widmen sich die meisten ausschließlich dem Training. Doch oft müssen Data Scientists auch beim Betrieb ihrer Modelle mitwirken. Dafür braucht es einen pragmatischen und unaufwändigen Weg.

Blog Post

Handling German Text with torchtext

Some nasty details on dealing with non-English text

Article

Vorgehensweise für maschinelles Lernen als Orientierung

Eine Vielzahl von hochentwickelten Technologien für maschinelles Lernen ist als Open Source frei verfügbar. Dennoch zeigt sich, dass es nur vergleichsweise wenige Anwender gibt, die diese Technologie in Produkten erfolgreich einzusetzen. Maschinelles Lernen ist ein sehr vielschichtiger und komplexer Bereich der Informatik und darüber hinaus ein Gebiet aktiver Forschung. Einsteiger können insbesondere im Bereich Deep Learning dadurch schnell den Eindruck gewinnen dass eine Einarbeitung nur auf hohem wissenschaftlichen Niveau möglich ist. Es gibt jedoch durchaus auch praxisorientierte Quellen. Viele Informationen sind nur in englischer Sprache verfügbar, daher verweist der Artikel auf englische Quellen.

Podcast

Deep Learning

Träumen Maschinen von elektrischen Daten?

Talk
Talk

Faktenbasierte LLM-Chatbots für Deine Domäne

INNOQ Technology Lunch 01/24 / 12:15 - 13:00

News

INNOQ Technology Day 2023 am 13. November

News

Women+ in Data and AI Summer Festival 2024

News

Technology Day 2023: am 13. November ist es wieder soweit!

News

INNOQ Technology Briefing

News

Women+ in Data and AI Summer Festival

News

Neuer Primer: MLOps

News

Neues Training: Domain-driven Design für Machine-Learning-Produkte

Case Study

SACAC optimizes the quotation process with a customized software solution

Case Study

Gaining a competitive edge in the quotation process through Machine Learning