Focus

Machine Learning and Artificial Intelligence

Articles, podcasts, talks, and more about Machine Learning and Artificial Intelligence.
Blog Post

AI Tools in Business Environments

Currently, the importance of AI tools is growing at a breathtaking pace and has also gained importance in the general public. More and more companies and organizations are relying on the advantages of artificial intelligence to improve their processes, increase their productivity, or better serve their customers. AI tools are able to reliably analyze data, recognize patterns, and make predictions that can already surpass human abilities in some areas. This makes them a valuable tool for optimizing business processes and developing innovative products and services. It’s no wonder that the demand for AI tools has exponentially increased in recent years and will continue to grow.

Podcast

Women in Tech: Larysa

Eine Frage des Outfits

Blog Post

Running an AI Chatbot on Your Own PC

Blog Post

How to use Apple Shortcuts to integrate GPT-3 in macOS and iOS

Apple Shortcuts is a powerful app that lets you create custom workflows with multiple steps using your apps and content. You can also use it to interact with web services and APIs, such as OpenAI’s GPT-3 based Completions API, which can generate text completions for any prompt or task. Yup, the thing that’s behind ChatGPT.

News

Women+ in Data and AI Summer Festival

Blog Post

How AI will replace my job

I started using ChatGPT for my work. Here is what it taught me and what AI might hold for the future of software development and consulting

Article

KI-Systeme: MLOps, Model Governance und Explainable AI sichern robusten Einsatz

Compliance und Vertrauen: Mit den richtigen Tools und Prozessen lassen sich KI-Systeme wirksam kontrollieren und im Einklang mit rechtlichen Vorgaben betreiben.

News

Neuer Primer: MLOps

News

Neues Training: Domain-driven Design für Machine-Learning-Produkte

Article

Fairness and Artificial Intelligence

Classical software testing cannot simply be transferred to AI. Model governance and internal audits are required to ensure fairness.

Article

Ethics and Artificial Intelligence

Artificial intelligence is forcing its way into many fields of application. Now it is important that it works in a responsible, secure, and transparent way. The regulation of AI systems is a legal, societal, and technical topic that demands broad awareness and that will become increasingly important in the years to come.

Blog Post

Das Test-driven Development für eine Conversational AI

Article

Machine Learning Security – Teil 2

ML kommt immer mehr in sensiblen Entscheidungssystemen zum Einsatz - z.B. in autonomen Fahrzeugen, in der Gesundheitsdiagnostik oder der Kreditwürdigkeitsprüfung. Dies bringt nicht nur neue Möglichkeiten, sondern auch neue Schwachstellen mit sich, die gezielt von Angriffen ausgenutzt werden können. In Teil 2 dieser Artikelserie beschäftigen wir uns mit verschiedenen Angriffstypen in der ML-Security-Landschaft und den dazugehörigen Lösungsvorschlägen.

Article

Machine Learning Security – Teil 1

Machine Learning kommt immer mehr in sensiblen Entscheidungssystemen zum Einsatz. Dies bringt nicht nur neue Möglichkeiten, sondern auch neue Schwachstellen mit sich, die gezielt von Angriffen ausgenutzt werden können. In Teil 1 dieses Artikels navigieren wir uns Stück für Stück durch die ML Security Taxonomie und nehmen die Perspektive des Angriffs ein.

Security Podcast

Machine Learning Security

„Aus großer Kraft folgt große Verantwortung”

Podcast

Technologiemonster

Welche Konsequenzen hat unser Handeln?

Case Study

SACAC optimizes the quotation process with a customized software solution

Case Study

Gaining a competitive edge in the quotation process through Machine Learning

Article

What tracks do we leave behind with technology?

Bei INNOQ setzen wir uns immer mehr mit KI und Machine Learning auseinander, allerdings mit ihrem sinnvollen Einsatz bei unseren Kunden und Projekten. Beste Voraussetzungen also für einen spannenden Diskurs.

Article

MLOps: You train it, you run it!

Data Science, Machine Learning (ML) und Artificial Intelligence haben in den letzten Jahren einen wahren Hype ausgelöst und viel Aufmerksamkeit in der Industrie bekommen. Man versucht mit Machine Learning Methoden entweder die Produktivität der Nutzer oder die Interaktivität der Applikation zu steigern. Zahlreiche Data Science Teams verbringen ihre Zeit damit Machine Learning Modelle zu trainieren. Allerdings beobachten wir zwei Arten von Problemen, die in der Praxis entstehen. Entweder schafft es die Mehrheit der ML Modelle nicht in ein Softwareprodukt eingebunden zu werden oder das Model Deployment nimmt zu viel Zeit in Anspruch.

Podcast

MLOps

Entwurf, Entwicklung, Betrieb

Article

Machine Learning Daten in den Griff bekommen

Für viele Verfahren im Bereich Datenanalyse und Machine Learning werden mehrdimensionale Arrays benötigt. Da oft mit großen Datenmengen gearbeitet wird, ist es, neben anderen Optimierungen, wünschenswert eine Array Implementierung zu verwenden, die auf hohe Performance und geringen Speicherverbrauch optimiert ist. Viele Frameworks setzen deshalb auf ndarrays von numpy oder eigene Implementierungen statt die Standard Listen- oder Arrayimplementierungen von Python zu verwenden.

Article

Pragmatisch zum Praxiseinsatz von Machine Learning in der Cloud

Die Anzahl von Publikationen zu Computer Vision, Natural Language Processing (NLP) oder Reinforcement Learning ist heutzutage gewaltig. Dabei widmen sich die meisten ausschließlich dem Training. Doch oft müssen Data Scientists auch beim Betrieb ihrer Modelle mitwirken. Dafür braucht es einen pragmatischen und unaufwändigen Weg.

Blog Post

Handling German Text with torchtext

Some nasty details on dealing with non-English text

Article

Vorgehensweise für maschinelles Lernen als Orientierung

Eine Vielzahl von hochentwickelten Technologien für maschinelles Lernen ist als Open Source frei verfügbar. Dennoch zeigt sich, dass es nur vergleichsweise wenige Anwender gibt, die diese Technologie in Produkten erfolgreich einzusetzen. Maschinelles Lernen ist ein sehr vielschichtiger und komplexer Bereich der Informatik und darüber hinaus ein Gebiet aktiver Forschung. Einsteiger können insbesondere im Bereich Deep Learning dadurch schnell den Eindruck gewinnen dass eine Einarbeitung nur auf hohem wissenschaftlichen Niveau möglich ist. Es gibt jedoch durchaus auch praxisorientierte Quellen. Viele Informationen sind nur in englischer Sprache verfügbar, daher verweist der Artikel auf englische Quellen.

Podcast

Deep Learning

Träumen Maschinen von elektrischen Daten?