Focus

Artificial Intelligence

Articles, podcasts, talks, and more about Artificial Intelligence.
Blog Post

Zu blöd für Vibe Coding?

Vibe Coding, also die Generierung von Code mit Hilfe von AI, gewinnt zunehmend an Popularität. Mit Claude Code hat Anthropic ein Tool entwickelt, welches mir zum ersten Mal das Gefühl gegeben hat, dass diese Art von Coding damit auch für mich funktionieren könnte. Ich hab’s ausprobiert, mit einer Problemstellung, die dafür wie gemacht zu sein schien. Lest nach, wie es mir dabei ergangen ist und welche Erkenntnisse ich gewonnen habe. Spoiler: es hat funktioniert, am Ende, irgendwie, aber war das noch Vibe Coding?

Blog Post

Datensouveränität unterwegs: OpenWebUI trifft Ollama im VPN

In diesem Beitrag zeige ich, wie ich LLMs mit Ollama auf einem mobilen MacBook betreibe – und dank VPN und OpenWebUI von überall darauf zugreifen kann. Sicher, und selbst gehostet. Schritt für Schritt zum persönlichen KI-Setup – performant, privat und unterwegs verfügbar.

Podcast

MCP – Model Context Protocol

Der Universalstecker für KI-Modelle

Article

Beyond the hype: An engineer’s journey into ReBAC and AI with the Model Context Protocol

In this article, I share my experiences on my journey into the AI world. During this journey, we’ll build our own Model Context Protocol (MCP) Server using C Sharp, learn about access management with relationship based access control (ReBAC) on the way, and in the end I’ll provide my thoughts on the current state of AI and MCP, focusing on security and UX.

Article

Building Standardized AI Tools with the Model Context Protocol (MCP)

In this article, we’ll explore the integration of Large Language Models and systems built on top of them. The key concept in this space recently is the Model Context Protocol (MCP).

Podcast

KI Agenten

Von Workflows zu autonomen Systemen

Blog Post

Transcribing podcasts with large language models

Automatically transcribing podcasts with multimodal AI sounds like a no-brainer, but the devil is in the details.

Blog Post

RAG: The Architecture of Reliable AI

How can we ensure that AI systems are precise, transparent, and always up to date? All Large Language Models (LLMs) have a cut-off date where their world knowledge ends. And they know nothing about your company’s internal information. Even the leading models still have hallucination rates we can’t completely ignore. Yet they offer enormous potential for productivity, efficiency, and creation. Retrieval-Augmented Generation (RAG) addresses exactly this issue: LLMs are enhanced through targeted information retrieval.

Blog Post

Document Ingestion

The Foundation of a RAG System

Blog Post

Retrieval-Augmented Generation

How do we handle situations where an LLM-driven system requires highly specialized enterprise knowledge that wasn’t included in the original model training? While LLMs have enormous potential to answer generic queries based on their comprehensive knowledge from training, they show limitations when it comes to current, specialized, or verified information.

Podcast

DeepSeek R1

Ein Wal liegt am Strand

Article

LLMs mit Spring AI integrieren

Spring AI stellt sich vor

Blog Post

Better RAG With Hybrid Search

One component of RAG (retrieval-augmented generation) is the retrieval. In other words: we have to solve a search problem. Reading articles about RAG, one can get the impression that vector search is the essential or even the only piece of the puzzle. In this blogpost you’ll see why this does not bring us close enough to the goal.

Blog Post

When the Worldview is Shifting

Large Language Models (LLMs) can feel like magic. We observe them and imagine that they work in a certain way. Then something surprises us, shattering the illusion and fundamentally reshaping our understanding. In this blogpost I’ll show you one such surprise from my own experience, and I believe that your worldview will have changed at the end.

Podcast

INNOQ Technology Day

Programm und Behind the Scenes

Blog Post

LLM-assisted Abbreviation Mining for Legacy Systems

This blog post shows the process of mining abbreviations and discovering first concepts a COBOL legacy mainframe codebase is made of with the help of Large Language Models. It uses Python, pandas and Claude 3.5 Sonnet to generate insights that can be gathered from such a simple thing like a list of files.

Article

Generative AI: The End of “Too Expensive” in Business Software?

”We’ve found no use cases.” — No, you’ve got too many. Let’s take a look at how Generative AI will change business software beyond chatbots. What features might become possible that weren’t before, or were just too expensive?

Article

Here’s All You Need To Know To Start Building With Generative AI

Article

How To Build a Data Product with Databricks

In today’s data engineering, the focus is primarily on developing modular data products. This article outlines the advantages of modularity over monolithic data pipelines and explains, step-by-step, how to develop data products using Databricks – from defining a data contract to creating and implementing Databricks Asset Bundles, setting up a CI/CD pipeline, and publishing metadata.

Podcast

KI-unterstützte Entwicklung

ChatGPT im täglichen Einsatz

Podcast

RAG

Abfragen und Bergen von Wissen

Podcast

Enterprise Search mit Vektordatenbanken

Was Vektordatenbanken anders machen als der Suchindex

Podcast

AI Prompting

Kontext ist Gold

Blog Post

Entwickeln mit ChatGPT

Wie KI meine Programmierarbeit revolutioniert

Blog Post

Lokale LLMs mit Ollama und Spring AI nutzen

Egal, ob wir wollen oder nicht, um AI und speziell Large Language Models (LLM) kommen wir aktuell nicht herum. Mich schrecken solche Hypes zwar aus Reflex eher ab. Allerdings sieht es so aus, als würde von diesem Hype mehr bleiben als vom letzten, der Blockchain. Deshalb wollen wir uns in diesem Post einmal anschauen, wie man ein LLM lokal aufsetzen kann und dieses mittels Spring AI in eine Spring Boot-Anwendung einbinden kann.

Blog Post

A natural language calculator

In my prior post I’ve written about how to run a chat with a large-language-model on your PC. This time I want to focus on scripting this with Node.js and letting the AI- and the “normal”-world interact with each other.

Podcast

Large Language Models

Verändern sie alles?

Blog Post

AI Tools in Business Environments

Currently, the importance of AI tools is growing at a breathtaking pace and has also gained importance in the general public. More and more companies and organizations are relying on the advantages of artificial intelligence to improve their processes, increase their productivity, or better serve their customers. AI tools are able to reliably analyze data, recognize patterns, and make predictions that can already surpass human abilities in some areas. This makes them a valuable tool for optimizing business processes and developing innovative products and services. It’s no wonder that the demand for AI tools has exponentially increased in recent years and will continue to grow.

Podcast

Women in Tech: Larysa

Eine Frage des Outfits

Blog Post

Running an AI Chatbot on Your Own PC

Blog Post

How to use Apple Shortcuts to integrate GPT-4o in macOS and iOS

Apple Shortcuts is a powerful app that lets you create custom workflows with multiple steps using your apps and content. You can also use it to interact with web services and APIs, such as OpenAI’s Chat Completions API for GPT-4o, which can generate text completions for any prompt or task. Yup, the thing that’s behind ChatGPT.

Blog Post

How AI will replace my job

In late 2022, I decided to try to use ChatGPT, an AI language processor, to do some of my daily software development work. Now, only a few weeks later, I am convinced AI might soon do most of my current work, at least measured by hours.

Article

KI-Systeme: MLOps, Model Governance und Explainable AI sichern robusten Einsatz

Article

Fairness and Artificial Intelligence

Classical software testing cannot simply be transferred to AI. Model governance and internal audits are required to ensure fairness.

Article

Ethics and Artificial Intelligence

Artificial intelligence is forcing its way into many fields of application. Now it is important that it works in a responsible, secure, and transparent way. The regulation of AI systems is a legal, societal, and technical topic that demands broad awareness and that will become increasingly important in the years to come.

Article

MLOps and Model Governance

Blog Post

Das Test-driven Development für eine Conversational AI

Anlässlich meines kürzlichen Wechsels vom Student zum Consultant schreibe ich in diesem zweiten Blogpost über die Thematik meiner Masterarbeit.

Article

Machine Learning Security – Teil 2

ML kommt immer mehr in sensiblen Entscheidungssystemen zum Einsatz - z.B. in autonomen Fahrzeugen, in der Gesundheitsdiagnostik oder der Kreditwürdigkeitsprüfung. Dies bringt nicht nur neue Möglichkeiten, sondern auch neue Schwachstellen mit sich, die gezielt von Angriffen ausgenutzt werden können. In Teil 2 dieser Artikelserie beschäftigen wir uns mit verschiedenen Angriffstypen in der ML-Security-Landschaft und den dazugehörigen Lösungsvorschlägen.

Article

Machine Learning Security – Teil 1

Eine neue Herausforderung

Security Podcast

Machine Learning Security

„Aus großer Kraft folgt große Verantwortung”

Podcast

Technologiemonster

Welche Konsequenzen hat unser Handeln?

Article

What tracks do we leave behind with technology?

How monsters can teach us about responsibility: INNOQ Digital Art Edition 02

Article

MLOps: You train it, you run it!

Data Science, Machine Learning (ML) und Artificial Intelligence haben in den letzten Jahren einen wahren Hype ausgelöst und viel Aufmerksamkeit in der Industrie bekommen. Man versucht mit Machine Learning Methoden entweder die Produktivität der Nutzer oder die Interaktivität der Applikation zu steigern. Zahlreiche Data Science Teams verbringen ihre Zeit damit Machine Learning Modelle zu trainieren. Allerdings beobachten wir zwei Arten von Problemen, die in der Praxis entstehen. Entweder schafft es die Mehrheit der ML Modelle nicht in ein Softwareprodukt eingebunden zu werden oder das Model Deployment nimmt zu viel Zeit in Anspruch.

Podcast

MLOps

Entwurf, Entwicklung, Betrieb

Article

Machine Learning Daten in den Griff bekommen

Mehrdimensionale Arrays für Machine Learning

Article

Pragmatisch zum Praxiseinsatz von Machine Learning in der Cloud

Die Anzahl von Publikationen zu Computer Vision, Natural Language Processing (NLP) oder Reinforcement Learning ist heutzutage gewaltig. Dabei widmen sich die meisten ausschließlich dem Training. Doch oft müssen Data Scientists auch beim Betrieb ihrer Modelle mitwirken. Dafür braucht es einen pragmatischen und unaufwändigen Weg.

Blog Post

Handling German Text with torchtext

There is a growing list of tools that are ready to be used with non-English texts. We show common ways to integrate them in torchtext and use their language-specific options.

Article

Vorgehensweise für maschinelles Lernen als Orientierung

Werkzeugneutrale Einführung

Podcast

Deep Learning

Träumen Maschinen von elektrischen Daten?

Case Study

Data Governance without handbrakes: How AI accelerates time-to-value in Data Mesh

News

Neues iSAQB®-Modul: Softwarearchitektur für KI-Systeme

News

Neuer Primer: Retrieval-Augmented Generation (RAG)

Case Study

Answers instead of search results:
Sprengnetter unlocks real estate expertise with Generative AI

News

Jetzt anmelden: INNOQ Technology Day 2024

News

INNOQ Technology Day am 5. Dezember 2024

News

Now Live: The Women+ in Data and AI Festival Schedule

News

Neues Training: GenAI für Entwickler:innen

News

INNOQ launches Data and AI Consulting Services

News

Neu bei INNOQ: Beratung und Entwicklung im Bereich Data und AI

News

INNOQ Technology Day 2023 am 13. November

News

Women+ in Data and AI Summer Festival 2024

News

Technology Day 2023: am 13. November ist es wieder soweit!

News

INNOQ Technology Briefing

News

Women+ in Data and AI Summer Festival

News

Neuer Primer: MLOps

News

Neues Training: Domain-driven Design für Machine-Learning-Produkte

Case Study

SACAC optimizes the quotation process with a customized software solution

Case Study

Gaining a competitive edge in the quotation process through Machine Learning