Focus

Machine Learning

Podcast

Technologiemonster

Welche Konsequenzen hat unser Handeln?

Case Study

The emancipation
from the ERP system

Highly individualized products need a highly individualized software solution
Case Study

The learning list

Using machine learning to generate competitive advantage with estimations
Article

What tracks do we leave behind with technology?

A gun is fired. Instead of the bullet leaving the barrel however, the whole cartridge whooshes back into the magazine. The clouds of dust vanish into thin air. Fragments hurtle towards the bullet hole in the wall, closing it up to an untouched surface. As if nothing had ever happened. The scene in Christopher Nolan’s film TENET shows the impossible: inverse entropy, in which disorder gives rise to order and the effect cancels out the cause.

Article

MLOps: You Train It, You Run It!

Data Science, Machine Learning (ML) und Artificial Intelligence haben in den letzten Jahren einen wahren Hype ausgelöst und viel Aufmerksamkeit in der Industrie bekommen. Man versucht mit Machine Learning Methoden entweder die Produktivität der Nutzer oder die Interaktivität der Applikation zu steigern. Zahlreiche Data Science Teams verbringen ihre Zeit damit Machine Learning Modelle zu trainieren. Allerdings beobachten wir zwei Arten von Problemen, die in der Praxis entstehen. Entweder schafft es die Mehrheit der ML Modelle nicht in ein Softwareprodukt eingebunden zu werden oder das Model Deployment nimmt zu viel Zeit in Anspruch.

Link

MLOps: Themenseite zu Machine Learning Operations

Podcast

MLOps

Entwurf, Entwicklung, Betrieb

Article

Machine Learning Daten in den Griff bekommen

Für viele Verfahren im Bereich Datenanalyse und Machine Learning werden mehrdimensionale Arrays benötigt. Da oft mit großen Datenmengen gearbeitet wird, ist es, neben anderen Optimierungen, wünschenswert eine Array Implementierung zu verwenden, die auf hohe Performance und geringen Speicherverbrauch optimiert ist. Viele Frameworks setzen deshalb auf ndarrays von numpy oder eigene Implementierungen statt die Standard Listen- oder Arrayimplementierungen von Python zu verwenden.

Article

Pragmatisch zum Praxiseinsatz von Machine Learning in der Cloud

Herausforderung Betrieb

Blog Post

Handling German Text with torchtext

There is a growing list of tools that are ready to be used with non-English texts. We show common ways to integrate them in torchtext and use their language-specific options.

Article

Vorgehensweise für maschinelles Lernen als Orientierung

Eine Vielzahl von hochentwickelten Technologien für maschinelles Lernen ist als Open Source frei verfügbar. Dennoch zeigt sich, dass es nur vergleichsweise wenige Anwender gibt, die diese Technologie in Produkten erfolgreich einsetzen. Maschinelles Lernen ist ein sehr vielschichtiger und komplexer Bereich der Informatik und darüber hinaus ein Gebiet aktiver Forschung. Einsteiger können insbesondere im Bereich Deep Learning dadurch schnell den Eindruck gewinnen, dass eine Einarbeitung nur auf hohem wissenschaftlichen Niveau möglich ist. Es gibt jedoch durchaus auch praxisorientierte Quellen. Viele Informationen sind nur in englischer Sprache verfügbar, daher verweist der Artikel auf englische Quellen.

Podcast

Deep Learning

Träumen Maschinen von elektrischen Daten?