Wait times are a thing of the past

In customer satisfaction, the time it takes to get answers to questions plays an important role. Using a chatbot means that wait times are a thing of the past in phone-based customer service. The AXA-Chatbot answers customers immediately and takes care of their concerns. In addition, service hours are expanded, offering 24/7 support to customers even on Sundays and holidays.

This also provides support to customer service staff for routine inquiries that can be answered by the chatbot without any problem. On the website, the customer communicates with the chatbot via messaging and also gets an answer in the form of a message. Customer service staff no longer have to deal with repeat questions and can thus concentrate on more demanding inquiries. For customers, the conversation seems natural, even though it is clear that they are communicating with a chatbot.

Implementation of the AXA-Chatbot with the Microsoft Bot Framework

In customer support today, it would be hard to find a topic more popular than chatbots and AI. A chatbot is a symbolic representation for the communication between a person and a computer.

The core technology of the AXA-Chatbot was not a completely new development by the Product Team but is based on the Microsoft Bot Framework. The framework created the prerequisites for fast implementation of a bot for the AXA website.

With the help of the BotFramework-WebChat React plug-in, it was possible to integrate the bot on the AXA website. A direct-line connection enables the website to access the bot. Other channels, such as Skype, Teams, and other chat-based applications can use this access via direct line. For security reasons, the AXA-Chatbot and all other parts of the solution run in a self-hosted environment.

In the MyAXA Project, we had already gotten to know and appreciate the competency of INNOQ as a technical partner. This impression was reconfirmed in the development of the AXA-Chatbot. In particular, the success of the project was facilitated by the good collaboration in the Project Team, consisting of AXA and INNOQ staff.

Mario ClassenProject Lead

The chatbot as a learning support colleague

Of particular importance in the development of the chatbot was the logic. The bot must process inquiries by AXA customers and provide them with the appropriate answers. In fact, the chatbot is able not only to answer simple, repetitive questions, but, thanks to progress in machine learning, can also handle more demanding tasks.

For instance, if a customer wants to replace an insurance card, the chatbot handles the entry of the necessary data and initiates the replacement process. The chatbot now offers a number of such self-services.

Alt Text

Aside from handling matters for the end customer, the chatbot can also be used internally: It is conceivable that service staff could also use the chatbot to answer questions faster. For instance, if a customer is interested in whether AXA pays for a medication, the employee previously had to search for the answer in the existing system, which could take some time. Enabling the service person to pose the question to the chatbot makes it possible to get the answer from the bot in real time.

1. Identifying important information in a conversation

The Cognitive Services from Microsoft are a component of Microsoft Azure and combine multiple AI services. Through the Language Understanding Intelligent Service LUIS, the bot is able to process natural language (Natural Language Processing*, NLP). As a result, important keywords from conversations can be filtered, and the intent and associated entities of the user can be identified. An entity is a word or expression within the utterance and describes information in regard to intent.

Even if a customer enters a sentence or series of words with errors in grammar, spelling, or punctuation, it is still possible to determine the context. Missing information can thus be determined through a dialog with AXA customers.

What is NLP?

Die Verarbeitung natürlicher Sprache (NLP) ist ein Teilgebiet der Linguistik, Informatik, Informationstechnik und künstlichen Intelligenz, das sich mit den Wechselwirkungen zwischen Computern und menschlichen (natürlichen) Sprachen befasst, insbesondere mit der Frage, wie man Computer programmiert, um große Mengen an natürlichen Sprachdaten zu verarbeiten und zu analysieren.

Herausforderungen bei der Verarbeitung natürlicher Sprachen sind häufig die Spracherkennung, das Verständnis natürlicher Sprachen und die Generierung natürlicher Sprachen.

2. Providing answers based on technical models and frequently asked questions

On the basis of the entities and intents found and the text entered, Azure Search searches a database for answers. Technical specialists fill the LUIS models and the database as technical models. For this purpose, the specialists use an administrative web interface that was developed in the course of the project. Interestingly, user tests showed that many users use the bot in a manner similar to a Google search, entering only keywords instead of whole sentences. Consequently, the team also implemented a list of keywords, which makes it possible to provide direct answers to frequently asked questions. If the bot is uncertain, it independently questions the user to determine the context more precisely and then provides an answer. The Service Department is contacted only if this fails.

The chatbot asks for context
The chatbot asks for context

Generally, messages are not restricted to text only, but can also include hyperlinks or images. In this way, answers can be tailored individually to the users.

Images as a selection option
Images as a selection option

3. Continuous learning and improvement

As time goes by, the chatbot learns and gets better with each inquiry. Among other things, this is achieved through user tests and analysis of the questions asked of the chatbot. If the chatbot does not provide any sensible answers to the questions asked, the cause is sought and the model revised accordingly.

4. If all else fails: emergency exit

If the chatbot reaches its limits and cannot help the customer further, in addition to a reference to the telephone hotline, there is also an option to use a button to establish a chat connection to a service agent in the corresponding AXA department.

Alt Text

Core technologies:

  • Chatbot: a server application based on node.js running in a docker container in the Azure Cloud. The frameworks used are Microsoft Bot Framework and express.
  • LUIS: internal local LUIS copy (natural language processing/machine learning) running in a docker container on the same Azure Cloud instance. Direct line: connection between the website and the chatbot, making it possible to access the chatbot via other channels.
  • Data proxy: a Spring Boot application runs on a JBoss server in the AXA infrastructure and provides a “REST” interface as a bridge to the AXA back-end systems (e.g. search for medications, application for certifications, insurance cards, etc.)

The epitome of an agile project team

Getting closer to the project goal step by step and ensuring that we do not lose track of the real users required an agile work environment. In order to achieve agility and assemble the necessary knowledge, it is essential to have an interdisciplinary team. At AXA, this problem was solved in an exemplary way. The team is made up of AXA and INNOQ personnel and includes the project manager and product owner, software developers, and two insurance experts in the respective areas of health insurance and car insurance.

The INNOQ project team
The INNOQ project team

How AXA profits from the chatbot:

  • The chatbot integrated on the website permits direct communication between customers and the company.
  • Customers can contact the AXA-Chatbot and get help without any wait time, 24 hours a day, 7 days a week, and 365 days a year, even at peak loads.
  • The system offers automatic and complete processing of interactions, such as requests for information, making it possible to solve problems directly.
  • Self-services offer customers fast, uncomplicated satisfaction of their needs, without requiring users to utilize web solutions like MyAXA, which require authentication with PostIdent.
  • Capability to support the complete customer journey in a customer dialog, thus improving the customer experience and customer satisfaction.
  • The chatbot lightens the load on service employees by answering simple and recurring questions.
  • The chatbot also provides internal support by searching a large volume of data to rapidly find the information the service agents need, and providing it to them quickly.
  • Thanks to the flexibility of the framework, the function of the chatbot can be expanded easily.

Outcome

A clever assistant as a new communications channel

Thanks to the breakthrough to a new communications paradigm, in which interaction is marked by asynchronicity and messaging platforms, artificial intelligence is becoming more and more important. The combination of AI and knowledge from user research makes it possible to develop chatbots that can be used to automate communication without sacrificing any humanity. AXA has recognized these trends and, with help from INNOQ, has developed a chatbot in an agile product team, in order to offer optimal support to its customers. With the aid of the Microsoft Bot Framework, the chatbot was developed quickly, implemented simply, tested, and published on the AXA website. The bot owes its intelligence to the Language Understanding Intelligent Service (LUIS). It uses keywords to determine intent and associated entities. User tests and UX research help to determine how the limits of the technology can be identified in such a way that user frustration is avoided. They permit continuous improvement of the chatbot. Users have the option of connecting to a real person, if they have the feeling that the chatbot cannot provide them with any further help.

Aminata Sidibe will be happy to answer any questions about the AXA-Chatbot.
+49 170 2493865.

We can also support your digitalization projects in your industry in all phases and look forward to talking with you.

Just talk to us

TAGS