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Clojure

A practical Lisp variant for the JVM
Functional programming
Dynamic Typing
Full-featured macro system
Concurrent programming support
Bi-directional Java interop
Immutable persistent data structures
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Lisp??
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Lots of irritating silly parentheses!?




PROGRAMMING

YOU'RE DOING IT COMPLETELY WRONG.

http://lemonodor.com/archives/2007/10/youre_doing_it_wrong.html
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QUICK AND DIRTY

| Wourp Nor Like Ir.

http://lemonodor.com/archives/2007/10/youre_doing_it_wrong.html
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Intro
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Data structures

Nurmb 2 34 0.234
UMbBErs 3,5 _2398989892820093093090292321

Characters \a \b \c

Symbols ab c

Regexps #"Ch.*se"

Lists Cfirst dast st D @)
Vectors  Gicmemmowmem
Maps {:de "Deutschland", :fr "France"}

Sets _______________________________ #{Bread ..... Cheesewme} ...........................................................

Thursday, May 20, 2010

17



Syntax
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“You've just seen it” — Rich Hickey




Syntax

(def my-set #{:a :b :c :c :c}) ;; #{:a :b
(def v [2 4 6 9 23])

v @ ;; 2

(v 2) ;; 6

(def people {:pg "Phillip", :st "Stefan"})
(people :st) ;; "Stefan"
(:xyz people) ;; nil

(+ 2 2) ;; 4
(class (/ 4 3)) ;; clojure.lang.Ratio
43 3);;3

(format "Hello, %s # %d" "world" 1)

:C}
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Syntax

(format "Hello, %s # %d" "world" 1)
; 'Hello, World # 1"

(apply str ["Hello, %s # %d" "world" 1])

, (a2 3)
(quote (a 2 3)) ;; (a 2 3)
‘(a2 3) ;; (a2 3)

; Evaluation
(eval '(format "Hello, %s" "World"))
(eval (read-string "(+ 2 2)"))
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Functions

(fn [x] (format "The value 1is %s\n" x))
;5 user$eval__1706%$fn__1707@390b755d

((fn [x] (format "The value 1s %s\n" x)) "Hello™)

;3 "'The value 1s Hello"

(def testfn (fn [x] (format "The value 1s %s\n" x)))
(testfn "Hello™)

(defn testfn [x] (format "The value 1s %s\n" x))
(testfn "Hello™)
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Functions

(defn even [x] (= @ (rem x 2)))
(even 4) ;; true

(def even-alias even)
(even-alias 2) ;; true

(defn every-even? [1] (every? even 1))
(every-even? '(2 4 6 8 9)) ;; false

(every? #(= @ (rem % 2)) '(2 4 6 8 9)) ;; false
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Functions

(defn make-counter [1nitial-value]
(let [current-value (atom initial-value)]

(fn []

(swap! current-value 1inc))))

(def counterl (make-counter 0))
(counterl) ;; 1
(counterl) ;; 2

(def counter?2 (make-counter 17))
(counterl) ;; 3

(counter2) ;; 18

(counterl) ;; 4

(counter?2) ;; 19
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Recursion

(defn reduce-1 [f val coll]
(1f (empty? coll) val
(reduce-1 f (f val (first coll)) (rest coll))))

(reduce-1 + @ [1 2 3 4]) ;; 10

(reduce-1 + @ (range 5)) ;; 10

(reduce-1 + @ (range 50)) ;; 1225

(reduce-1 + @ (range 50000)) ;; java.lang.StackOverflowError
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Recursion

(defn reduce-2 [f val coll]
(1f (empty? coll) val
(reducefl(f ¢ailvaticstredltddldnpebtesdleddD))))

(reduce-2 + @ [1 2 3 4]) ;; 10

(reduce-2 + @ (range 5)) ;; 10

(reduce-2 + @ (range 50)) ;; 1225
(reduce-2 + 0 (range 50000)) ;; 1249975000
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Example
(ns sample.grep

"A simple complete Clojure program."
(:use [clojure.contrib.io :only [read-lines]])

(:gen-class))

(defn numbered-1lines [lines]
(map vector (iterate inc @) 1ines))

(defn grep-in-file [pattern file]
{file (filter #(re-find pattern (second %)) (numbered-lines (read-1lines file)))})

(defn grep-in-files [pattern files]
Capply merge (map #(grep-in-file pattern %) files)))

(defn print-matches [matches]

(doseq [[fname submatches] matches, [1line-no, match] submatches]
(println (str fname ":" line-no ":" match))))

(defn -main [pattern & files]
(if Cor (nil? pattern) (empty? files))
(println "Usage: grep <pattern> <file...>")
(do
(println (format "grep started with pattern %s and file(s) %s"

pattern (Capply str (interpose ", " files))))
(print-matches (grep-in-files (re-pattern pattern) files))

(println "Done."))))
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Macros

(def *debug* true)

(defn log [msg]
(1f *debug* (printf "%s: %s\n" (java.util.Date.) msg)))

(log "Hello, World")
Tue Apr 27 19:00:43 CEST 2010: Hello, World

(log (format "Hello, World %d" (* 9 9))))
Tue Apr 27 19:06:45 CEST 2010: Hello, World 81

Thursday, May 20, 2010
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Macros

(def *debug* true)

(defmacro log [body]
(1f *debug* “(printf "%s: %s\n" (java.util.Date.) ~body)))

(log "Hello, World")
Tue Apr 27 19:00:43 CEST 2010: Hello, World

(macroexpand '(log "Hello, World"))

(1f user/*debug*
(printf "%s: %s\n" (java.util.Date.) "Hello, World"))

(macroexpand '(log (format "Hello, World %d" (* 9 9))))

(1f *debug*
(printf "%s: %s\n" (java.util.Date.)
(format "Hello, World %d" (* 9 9))))

Thursday, May 20, 2010
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Macros

(binding [*debug* false]
(log "Hello, World™))

(defmacro with-debug [body]
"(binding [*debug* true]
~body))

(with-debug
(log "Hello, World")
(log "Clojure rocks"))

Tue Apr 27 19:22:35 CEST 2010: Hello, World
Tue Apr 27 19:22:35 CEST 2010: Clojure rocks
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Macros

(defmacro with-debug [body]
"(binding [*debug* true]
~body))

(macroexpand '(binding [*debug* true]
(log "Hello, World")))

(let*
[]

(clojure.core/push-thread-bindings (clojure.core/hash-map
(var *debug*) true))

(try
(log "Hello, World")
(finally (clojure.core/pop-thread-bindings))))
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Lots of other cool stuff

Persistent data structures
Sequences
Support for concurrent programming
Destructuring
List comprehensions
Metadata
Optiional type information
Multimethods
Pre & Post Conditions
Protocols (1.2)
Extensive core and contrib libraries
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State
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471 |: Person

first: John
» |ast: Smith

-

0815: Person

first: Jane

» |ast: Doe <

s\

) 4

A 3
A 3

4
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The Problem!
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Immutability

user> (def v (apply vector (range 10)))
#'user/v

user> v

01234567 8 9]

user> (assoc v 1 99)

[0 99 2 34506 7 8 9]

user> v

[0 1234567 8 9]

user> (def vZ2 (assoc v 1 99))

#'user/v2

user> vZ2
[0 99 2 345 067 8 9]
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user> (def v (apply vector (range 10)))
user> (def v2 (assoc v 1 99))

] x5 EN{xa | En ]

N’
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Persistent Data Structures

Pure functional programming model
Efficient implementation
Structural sharing
Thread-safe
Iteration-safe
Based on Bit-partioned hash tries
“Transient” data structures if needed




Performance Guarantees

hash-map
conj near-
constant
assocC near-
constant
dissoc near-
constant
disj -
nth -
get near-
constant
pop -
peek -
count constant

sorted-map hash-set

logarith near-

mic constant

logarith -

mic

logarith -

mic

- near-
constant

logarith near-

mic constant

constant constant

sorted-set

logarith
mic

logarith
mic

logarith
mic

vector queue

constant constant
(tail) (tail)
near- -
constant

near- linear
constant

near- -
constant

constant constant
(tail) (head)
constant constant

(tail) (head)

constant constant constant

list lazy seq

constant constant
(head) (head)

linear linear

constant constant
(head) (head)
constant constant
(head) (head)

constant linear
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Sequences

Standard API for
everything sequencable

Collections
Strings

Native |ava arrays
java.lang.lterable

Anything that supports
first, rest, cons

Thursday, May 20, 2010
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Sequences

Standard API for
everything sequencable

“Lazy”’ sequences

(def n (iterate (fn [x] (+ x 1)) 0))
(def fives (map #(* 5 %) n))
(take 10 fives)

Thursday, May 20, 2010
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Extensive library

apply
butlast
concat
cons
cycle
distinct
doall
dorun
doseq
drop
drop-last
drop-while
empty!
every!
ffirst
file-seq
filter
first
fnext

for

Sequences

interleave
interpose
into
into-array
iterate
iterator-seq
keys

last
lazy-cat
lazy-seq
line-seq
map
mapcat
next
nfirst
nnext
not-any!
not-empty
not-every!
nth

nthnext
partition
pmap
range
re-seq
reduce
remove
repeat
repeatedly
replace
replicate
rest
resultset-seq
reverse
rseq
rsubseq
second
seq

seq!
seque

set

some

sort
sort-by
split-at
split-with
subseq
take
take-nth
take-while
to-array-2d
tree-seq
vals

vec
when-first
xml-seq
zipmap
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Concurrency Support




Core ldeas

Everything immutable
Shared state for reading
No changes to shared state
Isolated threads
Re-use of platform facilities

Java Integration
(java.util.concurrent.Callable)




def & binding

(def some-var 10)

(binding [some-var 30]
(println some-var)) ;; 30

(def some-var 10)
(println some-var) ;; 10

(binding [some-var some-var]
(println some-var) ;; 10
(set! some-var 30)
(println some-var)) ;; 30
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Atoms

(def a (atom "Initial Value™))
(println @a) ;; "Initial Value"

(swap! a #(Capply str (reverse %)))
(println @a) ;; "eulaV laitinI”

(swap! a #(apply str (reverse %)))
(println @a) ;; "Initial Value"

Thursday, May 20, 2010
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Atoms

(defn run-thread-fn [f]
(.start (new Thread f)))

(defn add-1ist-i1tem [coll-atom x]
(swap! coll-atom #(conj % x)))

(def int-1list Catom ())) ;; O

(run-thread-fn #(add-1ist-item int-1ist 5)) ;; (5)
(run-thread-fn #(add-1list-i1tem int-11ist 3)) ;; (3 5)
(run-thread-fn #(add-1list-item int-11ist 1)) ;; (1 3 5)

(def int-list Catom ())) ;; O

(let [run-fn (fn [x] (run-thread-fn #(add-1list-i1tem int-1l1ist x)))]
(doall (map run-fn (range 100))))

;3 (98 97 9% ... 0)
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Refs

(defn make-account
[balance owner]
{:balance balance, :owner owner})

(defn withdraw [account amount]
(assoc account :balance (-
(account :balance) amount)))

(defn deposit [account amount]
(assoc account :balance (+
(account :balance) amount)))

Thursday, May 20, 2010
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Refs

(defn transfer
[from to amount]
(dosync
(alter from withd
(alter to deposit

(defn 1init-accounts
(def accl (ref (ma
(def accZ2 (ref (ma

raw amount)
amount)))

]
ke-account 1000 "alice")))
ke-account 1000 "bob")))

(def acc3 (ref (ma

ke-account 1000 "charles"))))

Thursday, May 20, 2010
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Refs

(1nit-accounts)

accl: {:balance 1000, :owner "alice"}
acc2: {:balance 1000, :owner "bob"}
acc3: {:balance 1000, :owner "charles"}

(do
(run-thread-fn #(transfer accl acc2 100))
(transfer acc3 accl 400))

accl: {:balance 1300, :owner "alice"}
accZ2: {:balance 1100, :owner "bob"}
acc3: {:balance 600, :owner "charles"}
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Refs

accl: {:balance 1300, :owner "alice"}
accZ2: {:balance 1100, :owner "bob"}
acc3: {:balance 600, :owner "charles"}

(defn slow-transfer
[from to amount]
(dosync
(sleep 1000)
(alter from withdraw amount)
(alter to deposit amount)))

(do
(run-thread-fn #(slow-transfer accl accZ 100))
(transfer acc3 accl 400))

accl: {:balance 1600, :owner "alice"}
accZ2: {:balance 1200, :owner "bob"}
acc3: {:balance 200, :owner "charles"}
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Software Transactional Memory
(STM)

Multi-version concurrency control (MVCCQC)
Atomic changes to multiple refs
Non-blocking, retry-based
“Read committed”

Can't help with non-pure functions
Works with atoms and agents

deref/@ ensure commute ref-set alter throw




Software Transactional Memory

deref/@

ensure

commute

ref-set

alter

throw

Reads value of reference, blocks none

Reads value of reference, blocks writers

Reads value of reference, blocks none,
delayed write, last writer wins

Changes reference to new value, blocks
writers

Atomically reads, computes, sets reference
value, blocks writers

Rolls back transaction
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Agents

Asynchronous execution

Run on java.util.concurrent thread pool

(let [my-agent (agent 0)
slow-fn (fn [x]
(sleep 1000)
(inc x))]
(send my-agent slow-fn)
(println @my-agent)
(sleep 2000)
(println @my-agent))
;5 0
;5 1

agent send send-off deref/@ await

await-for

Thursday, May 20, 2010
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agent

send

send-off
deref/@

awalt

await-for

Agents

Creates agent with initial value

Dispatch function to agent for execution

Dispatch long-running function

Read agent value

Wait for agent to execute function(s)
dispatched from current thread

Same as await, but with timeout
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Validators

(def some-var 10)
(set-validator! #'some-var #(< % 100))

(def some-var 101) ;; Invalid reference state
;5 LThrown class java.lang.IllegalStateException]

(def some-var)
(defn 1limit-validator [limit]
(fn [new-value]
(1f (< new-value 1imit)
true
(throw (Exception.
(format "Value %d 1is larger than 1imit %d"
new-value 1limit))))))

(set-validator! #'some-var (limit-validator 100))
(def some-var 101)

;3 Value 101 1s larger than limit 100

;5 [Thrown class java.lang.Exception]
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Watchers

(def *a* (atom 0))
(def *events* (atom ()))

(defn log-event
[coll s]
(swap! coll conj s))

(log-event *events* "some event") ;; ("some event")
(log-event *events* "yet another event"™) ;; ("yet another event" "some event™)

(defn log-value-change
[key ref old new]
(1f (= key :1og)
(log-event *events* (format "value of %s changed from %d to %d" ref old new))))

(log-value-change :log 'x 0 1)

;3 ("value of x changed from @ to 1" "yet another event
(add-watch a :log log-value-change)

(swap! a inc) ;; 1

some event")

(deref *events*)
;5 ("value of clojure.lang.Atom@59829cob changed from @ to 1"
;5 value of x changed from @ to 1" "yet another event" "some event")
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Futures & Promises

user> (doc future)

clojure.core/future

([& body])

Macro
Takes a body of expressions and yields a future object that will
invoke the body 1in another thread, and will cache the result and
return 1t on all subsequent calls to deref/@. If the computation has
not yet finished, calls to deref/@ will block.

user> (doc promise)

clojure.core/promise

CLID
Alpha - subject to change.
Returns a promise object that can be read with deref/@, and set,
once only, with deliver. Calls to deref/@ prior to delivery will

block. All subsequent derefs will return the same delivered value
without blocking.
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global
def

thread-local

|
binding
set!

shared

I
single

sync

|
|
async

atom agent

|
multiple

dosync
ref

Thursday, May 20, 2010

58



Summary

Built on immutablity from the ground up
Powerful collections
Extensive sequence library
Built-in concurrency primitives
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Java Integration




Clojure — Java

(new java.lang.String "Hello")
(java.lang.String. "Even quicker™)
(java.1io.File/separator)

(import '(java.io InputStream File))
(File/separator)

(. System/out println "Hello")
(.println System/out "Hello")

(defn blank? [s] (every? #(Character/isWhitespace %) s))
(blank? "some string") ;; false
(blank? "") ;; true

(every? #(instance? java.util.Collection %)

(L1 2] (1 2) #41 23))

;; true
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Clojure < Java

(import '(java.util Vector Collections))

(def java-collection (Vector.))
(doto java-collection

(.add "Gamma™)

(.add "Beta™)

(.add "Alpha™))
;3 #<Vector [Gamma, Beta, Alpha]>

(defn make-comparator [compare-fn]
(proxy [java.util.Comparator] []
(compare [left right] (compare-fn left right))))

(Collections/sort java-collection
(make-comparator #(. %1 compareTo %2)))

;5 #<Vector [Alpha, Beta, Gamma]>
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Clojure « Java

package com.1innoq.test;

public interface ClojureInterface {
String reverse(String s);

¥

(ns com.1innoqg.test)

(gen-class

:name  com.1nhnoq.test.ClojureClass
:implements [com.innoq.test.Clojurelnterface]
:prefix class-)

(defn class-reverse
[this s]
Capply str (reverse s)))

package com.innoq.test;
public class ClojureMain {
public static void main(String[] args) {
Clojurelnterface cl = new ClojureClass();
System.out.println("String from Clojure:

+ cl.reverse("Hello, World"));
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Core Blogs

http://clojure.org/ http://www.bestinclass.dk/index.php/blog/
clojure@googlegroups.com http://stuartsierra.com/

#clojure freenode http://technomancy.us/

build.clojure.org http://kotka.de/blog/
http://en.wikibooks.org/wiki/Clojure http://blog.fogus.me/

http://www.assembla.com/wiki/show/clojure/Getting Started

http://github.com/relevance/labrepl

Screencasts

http://technomancy.us/ |36
http://peepcode.com/products/functional-programming-with-clojure

http://vimeo.com/channels/fulldisclojure

Books

The Little Schemer

Stuart Halloway . Paul Graham
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