Concurrent Programming
with Clojure

Functional Programming meets the VM
Stefan Tilkov | innoQ

Stefan Tilkov

stefan.tilkov@innog.com

http://www.innoq.com/blog/st/
@stilkov

http://rest-http.info

Stefan Tilkov

REUSHI HITP

Einsatz der Architektur des Web fur
Integrationsszenarien

dpunkt.verlag

Thursday, May 20, 2010

SoftwareArchitek TOUR

Michael Stal - Christian VWeyer -
Markus Volter - Stefan Tilkov

http://heise.de/developer/podcast

Thursday, May 20, 2010

INnno Q

http://www.innog.com

Thursday, May 20, 2010

Thursday, May 20, 2010

Clojure

A practical Lisp variant for the JVM
Functional programming
Dynamic Typing
Full-featured macro system
Concurrent programming support
Bi-directional Java interop
Immutable persistent data structures

Thursday, May 20, 2010

Lisp??

Thursday, May 20, 2010

Lots of irritating silly parentheses!?

PROGRAMMING

YOU'RE DOING IT COMPLETELY WRONG.

http://lemonodor.com/archives/2007/10/youre_doing_it_wrong.html

Thursday, May 20, 2010 10

QUICK AND DIRTY

| Wourp Nor Like Ir.

http://lemonodor.com/archives/2007/10/youre_doing_it_wrong.html

Thursday, May 20, 2010 11

LISP 15 OVER HALT A
CENTURYOLD AND IT
STILL HAS THIS PERFECT,
TIMELESS AIRABOUTIT.

N

ilLL CONTINUE F7OEEVER/-‘

s e

«FE\J CODERS FROMEAH

T WONDER IF THE CYCLES

|-

NEW GENERATION RE-
DISCOVERING THE LISP ARTS.

THESE ARE YOUR
FATHER'S PARENTHESES

m

M)
MNM))))\)
) -/
\-./

DM
N

FOR A MORE... CIVILZED AGE.

@,

http://xkcd.com/297/

Thursday, May 20, 2010

12

www.flickr.com/photos/nicolasrolland/3063007013/

Thursday, May 20, 2010

Thursday, May 20, 2010

http://www.tbray.org/ongoing/VWhen/200x/2008/09/25/

o
L e

14

Intro

Thursday, May 20, 2010

15

Clojure Environment

— - B)s) - P
@” < NetBeans |DE

Il IntellijIDEA

Clojuresque (Gradle)

Leiningen Al
<APACHE ANT>

Data structures

Nurmb 2 34 0.234
UMbBErs 3,5 _2398989892820093093090292321

Characters \a \b \c

Symbols ab c

Regexps #"Ch.*se"

Lists Cfirst dast st D @)
Vectors Gicmemmowmem
Maps {:de "Deutschland", :fr "France"}

Sets _______________________________ #{Bread Cheesewme} ...

Thursday, May 20, 2010

17

Syntax

Thursday, May 20, 2010

18

“You've just seen it” — Rich Hickey

Syntax

(def my-set #{:a :b :c :c :c}) ;; #{:a :b
(def v [2 4 6 9 23])

v @ ;; 2

(v 2) ;; 6

(def people {:pg "Phillip", :st "Stefan"})
(people :st) ;; "Stefan"
(:xyz people) ;; nil

(+ 2 2) ;; 4
(class (/ 4 3)) ;; clojure.lang.Ratio
43 3);;3

(format "Hello, %s # %d" "world" 1)

:C}

Thursday, May 20, 2010

20

Syntax

(format "Hello, %s # %d" "world" 1)
; 'Hello, World # 1"

(apply str ["Hello, %s # %d" "world" 1])

, (a2 3)
(quote (a 2 3)) ;; (a 2 3)
‘(a2 3) ;; (a2 3)

; Evaluation
(eval '(format "Hello, %s" "World"))
(eval (read-string "(+ 2 2)"))

Thursday, May 20, 2010

21

Functions

(fn [x] (format "The value 1is %s\n" x))
;5 user$eval__1706%$fn__1707@390b755d

((fn [x] (format "The value 1s %s\n" x)) "Hello™)

;3 "'The value 1s Hello"

(def testfn (fn [x] (format "The value 1s %s\n" x)))
(testfn "Hello™)

(defn testfn [x] (format "The value 1s %s\n" x))
(testfn "Hello™)

Thursday, May 20, 2010

22

Functions

(defn even [x] (= @ (rem x 2)))
(even 4) ;; true

(def even-alias even)
(even-alias 2) ;; true

(defn every-even? [1] (every? even 1))
(every-even? '(2 4 6 8 9)) ;; false

(every? #(= @ (rem % 2)) '(2 4 6 8 9)) ;; false

Thursday, May 20, 2010

23

Functions

(defn make-counter [1nitial-value]
(let [current-value (atom initial-value)]

(fn []

(swap! current-value 1inc))))

(def counterl (make-counter 0))
(counterl) ;; 1
(counterl) ;; 2

(def counter?2 (make-counter 17))
(counterl) ;; 3

(counter2) ;; 18

(counterl) ;; 4

(counter?2) ;; 19

Thursday, May 20, 2010

24

Recursion

(defn reduce-1 [f val coll]
(1f (empty? coll) val
(reduce-1 f (f val (first coll)) (rest coll))))

(reduce-1 + @ [1 2 3 4]) ;; 10

(reduce-1 + @ (range 5)) ;; 10

(reduce-1 + @ (range 50)) ;; 1225

(reduce-1 + @ (range 50000)) ;; java.lang.StackOverflowError

Thursday, May 20, 2010

25

Recursion

(defn reduce-2 [f val coll]
(1f (empty? coll) val
(reducefl(f ¢ailvaticstredltddldnpebtesdleddD))))

(reduce-2 + @ [1 2 3 4]) ;; 10

(reduce-2 + @ (range 5)) ;; 10

(reduce-2 + @ (range 50)) ;; 1225
(reduce-2 + 0 (range 50000)) ;; 1249975000

Thursday, May 20, 2010

26

Example
(ns sample.grep

"A simple complete Clojure program."
(:use [clojure.contrib.io :only [read-lines]])

(:gen-class))

(defn numbered-1lines [lines]
(map vector (iterate inc @) 1ines))

(defn grep-in-file [pattern file]
{file (filter #(re-find pattern (second %)) (numbered-lines (read-1lines file)))})

(defn grep-in-files [pattern files]
Capply merge (map #(grep-in-file pattern %) files)))

(defn print-matches [matches]

(doseq [[fname submatches] matches, [1line-no, match] submatches]
(println (str fname ":" line-no ":" match))))

(defn -main [pattern & files]
(if Cor (nil? pattern) (empty? files))
(println "Usage: grep <pattern> <file...>")
(do
(println (format "grep started with pattern %s and file(s) %s"

pattern (Capply str (interpose ", " files))))
(print-matches (grep-in-files (re-pattern pattern) files))

(println "Done."))))

Thursday, May 20, 2010

27

Macros

(def *debug* true)

(defn log [msg]
(1f *debug* (printf "%s: %s\n" (java.util.Date.) msg)))

(log "Hello, World")
Tue Apr 27 19:00:43 CEST 2010: Hello, World

(log (format "Hello, World %d" (* 9 9))))
Tue Apr 27 19:06:45 CEST 2010: Hello, World 81

Thursday, May 20, 2010

28

Macros

(def *debug* true)

(defmacro log [body]
(1f *debug* “(printf "%s: %s\n" (java.util.Date.) ~body)))

(log "Hello, World")
Tue Apr 27 19:00:43 CEST 2010: Hello, World

(macroexpand '(log "Hello, World"))

(1f user/*debug*
(printf "%s: %s\n" (java.util.Date.) "Hello, World"))

(macroexpand '(log (format "Hello, World %d" (* 9 9))))

(1f *debug*
(printf "%s: %s\n" (java.util.Date.)
(format "Hello, World %d" (* 9 9))))

Thursday, May 20, 2010

29

Macros

(binding [*debug* false]
(log "Hello, World™))

(defmacro with-debug [body]
"(binding [*debug* true]
~body))

(with-debug
(log "Hello, World")
(log "Clojure rocks"))

Tue Apr 27 19:22:35 CEST 2010: Hello, World
Tue Apr 27 19:22:35 CEST 2010: Clojure rocks

Thursday, May 20, 2010

30

Macros

(defmacro with-debug [body]
"(binding [*debug* true]
~body))

(macroexpand '(binding [*debug* true]
(log "Hello, World")))

(let*
[]

(clojure.core/push-thread-bindings (clojure.core/hash-map
(var *debug*) true))

(try
(log "Hello, World")
(finally (clojure.core/pop-thread-bindings))))

Thursday, May 20, 2010

31

Lots of other cool stuff

Persistent data structures
Sequences
Support for concurrent programming
Destructuring
List comprehensions
Metadata
Optiional type information
Multimethods
Pre & Post Conditions
Protocols (1.2)
Extensive core and contrib libraries

Thursday, May 20, 2010

State

Thursday, May 20, 2010

33

-

471 |: Person

first: John
» |ast: Smith

-

0815: Person

first: Jane

» |ast: Doe <

s\

) 4

A 3
A 3

4
4

The Problem!

Thursday, May 20, 2010

34

Immutability

user> (def v (apply vector (range 10)))
#'user/v

user> v

01234567 8 9]

user> (assoc v 1 99)

[0 99 2 34506 7 8 9]

user> v

[0 1234567 8 9]

user> (def vZ2 (assoc v 1 99))

#'user/v2

user> vZ2
[0 99 2 345 067 8 9]

Thursday, May 20, 2010

35

user> (def v (apply vector (range 10)))
user> (def v2 (assoc v 1 99))

] x5 EN{xa | En]

N’

Thursday, May 20, 2010

36

Persistent Data Structures

Pure functional programming model
Efficient implementation
Structural sharing
Thread-safe
Iteration-safe
Based on Bit-partioned hash tries
“Transient” data structures if needed

Performance Guarantees

hash-map
conj near-
constant
assocC near-
constant
dissoc near-
constant
disj -
nth -
get near-
constant
pop -
peek -
count constant

sorted-map hash-set

logarith near-

mic constant

logarith -

mic

logarith -

mic

- near-
constant

logarith near-

mic constant

constant constant

sorted-set

logarith
mic

logarith
mic

logarith
mic

vector queue

constant constant
(tail) (tail)
near- -
constant

near- linear
constant

near- -
constant

constant constant
(tail) (head)
constant constant

(tail) (head)

constant constant constant

list lazy seq

constant constant
(head) (head)

linear linear

constant constant
(head) (head)
constant constant
(head) (head)

constant linear

Thursday, May 20, 2010

38

Sequences

Standard API for
everything sequencable

Collections
Strings

Native |ava arrays
java.lang.lterable

Anything that supports
first, rest, cons

Thursday, May 20, 2010

39

Sequences

Standard API for
everything sequencable

“Lazy”’ sequences

(def n (iterate (fn [x] (+ x 1)) 0))
(def fives (map #(* 5 %) n))
(take 10 fives)

Thursday, May 20, 2010

40

Extensive library

apply
butlast
concat
cons
cycle
distinct
doall
dorun
doseq
drop
drop-last
drop-while
empty!
every!
ffirst
file-seq
filter
first
fnext

for

Sequences

interleave
interpose
into
into-array
iterate
iterator-seq
keys

last
lazy-cat
lazy-seq
line-seq
map
mapcat
next
nfirst
nnext
not-any!
not-empty
not-every!
nth

nthnext
partition
pmap
range
re-seq
reduce
remove
repeat
repeatedly
replace
replicate
rest
resultset-seq
reverse
rseq
rsubseq
second
seq

seq!
seque

set

some

sort
sort-by
split-at
split-with
subseq
take
take-nth
take-while
to-array-2d
tree-seq
vals

vec
when-first
xml-seq
zipmap

Thursday, May 20, 2010

41

Concurrency Support

Core ldeas

Everything immutable
Shared state for reading
No changes to shared state
Isolated threads
Re-use of platform facilities

Java Integration
(java.util.concurrent.Callable)

def & binding

(def some-var 10)

(binding [some-var 30]
(println some-var)) ;; 30

(def some-var 10)
(println some-var) ;; 10

(binding [some-var some-var]
(println some-var) ;; 10
(set! some-var 30)
(println some-var)) ;; 30

Thursday, May 20, 2010

44

Atoms

(def a (atom "Initial Value™))
(println @a) ;; "Initial Value"

(swap! a #(Capply str (reverse %)))
(println @a) ;; "eulaV laitinI”

(swap! a #(apply str (reverse %)))
(println @a) ;; "Initial Value"

Thursday, May 20, 2010

45

Atoms

(defn run-thread-fn [f]
(.start (new Thread f)))

(defn add-1ist-i1tem [coll-atom x]
(swap! coll-atom #(conj % x)))

(def int-1list Catom ())) ;; O

(run-thread-fn #(add-1ist-item int-1ist 5)) ;; (5)
(run-thread-fn #(add-1list-i1tem int-11ist 3)) ;; (3 5)
(run-thread-fn #(add-1list-item int-11ist 1)) ;; (1 3 5)

(def int-list Catom ())) ;; O

(let [run-fn (fn [x] (run-thread-fn #(add-1list-i1tem int-1l1ist x)))]
(doall (map run-fn (range 100))))

;3 (98 97 9% ... 0)

Thursday, May 20, 2010

46

Refs

(defn make-account
[balance owner]
{:balance balance, :owner owner})

(defn withdraw [account amount]
(assoc account :balance (-
(account :balance) amount)))

(defn deposit [account amount]
(assoc account :balance (+
(account :balance) amount)))

Thursday, May 20, 2010

47

Refs

(defn transfer
[from to amount]
(dosync
(alter from withd
(alter to deposit

(defn 1init-accounts
(def accl (ref (ma
(def accZ2 (ref (ma

raw amount)
amount)))

]
ke-account 1000 "alice")))
ke-account 1000 "bob")))

(def acc3 (ref (ma

ke-account 1000 "charles"))))

Thursday, May 20, 2010

48

Refs

(1nit-accounts)

accl: {:balance 1000, :owner "alice"}
acc2: {:balance 1000, :owner "bob"}
acc3: {:balance 1000, :owner "charles"}

(do
(run-thread-fn #(transfer accl acc2 100))
(transfer acc3 accl 400))

accl: {:balance 1300, :owner "alice"}
accZ2: {:balance 1100, :owner "bob"}
acc3: {:balance 600, :owner "charles"}

Thursday, May 20, 2010 49

Refs

accl: {:balance 1300, :owner "alice"}
accZ2: {:balance 1100, :owner "bob"}
acc3: {:balance 600, :owner "charles"}

(defn slow-transfer
[from to amount]
(dosync
(sleep 1000)
(alter from withdraw amount)
(alter to deposit amount)))

(do
(run-thread-fn #(slow-transfer accl accZ 100))
(transfer acc3 accl 400))

accl: {:balance 1600, :owner "alice"}
accZ2: {:balance 1200, :owner "bob"}
acc3: {:balance 200, :owner "charles"}

Thursday, May 20, 2010 50

Software Transactional Memory
(STM)

Multi-version concurrency control (MVCCQC)
Atomic changes to multiple refs
Non-blocking, retry-based
“Read committed”

Can't help with non-pure functions
Works with atoms and agents

deref/@ ensure commute ref-set alter throw

Software Transactional Memory

deref/@

ensure

commute

ref-set

alter

throw

Reads value of reference, blocks none

Reads value of reference, blocks writers

Reads value of reference, blocks none,
delayed write, last writer wins

Changes reference to new value, blocks
writers

Atomically reads, computes, sets reference
value, blocks writers

Rolls back transaction

Thursday, May 20, 2010

52

Agents

Asynchronous execution

Run on java.util.concurrent thread pool

(let [my-agent (agent 0)
slow-fn (fn [x]
(sleep 1000)
(inc x))]
(send my-agent slow-fn)
(println @my-agent)
(sleep 2000)
(println @my-agent))
;5 0
;5 1

agent send send-off deref/@ await

await-for

Thursday, May 20, 2010

53

agent

send

send-off
deref/@

awalt

await-for

Agents

Creates agent with initial value

Dispatch function to agent for execution

Dispatch long-running function

Read agent value

Wait for agent to execute function(s)
dispatched from current thread

Same as await, but with timeout

Thursday, May 20, 2010

54

Validators

(def some-var 10)
(set-validator! #'some-var #(< % 100))

(def some-var 101) ;; Invalid reference state
;5 LThrown class java.lang.IllegalStateException]

(def some-var)
(defn 1limit-validator [limit]
(fn [new-value]
(1f (< new-value 1imit)
true
(throw (Exception.
(format "Value %d 1is larger than 1imit %d"
new-value 1limit))))))

(set-validator! #'some-var (limit-validator 100))
(def some-var 101)

;3 Value 101 1s larger than limit 100

;5 [Thrown class java.lang.Exception]

Thursday, May 20, 2010

55

Watchers

(def *a* (atom 0))
(def *events* (atom ()))

(defn log-event
[coll s]
(swap! coll conj s))

(log-event *events* "some event") ;; ("some event")
(log-event *events* "yet another event"™) ;; ("yet another event" "some event™)

(defn log-value-change
[key ref old new]
(1f (= key :1og)
(log-event *events* (format "value of %s changed from %d to %d" ref old new))))

(log-value-change :log 'x 0 1)

;3 ("value of x changed from @ to 1" "yet another event
(add-watch a :log log-value-change)

(swap! a inc) ;; 1

some event")

(deref *events*)
;5 ("value of clojure.lang.Atom@59829cob changed from @ to 1"
;5 value of x changed from @ to 1" "yet another event" "some event")

Thursday, May 20, 2010 56

Futures & Promises

user> (doc future)

clojure.core/future

([& body])

Macro
Takes a body of expressions and yields a future object that will
invoke the body 1in another thread, and will cache the result and
return 1t on all subsequent calls to deref/@. If the computation has
not yet finished, calls to deref/@ will block.

user> (doc promise)

clojure.core/promise

CLID
Alpha - subject to change.
Returns a promise object that can be read with deref/@, and set,
once only, with deliver. Calls to deref/@ prior to delivery will

block. All subsequent derefs will return the same delivered value
without blocking.

Thursday, May 20, 2010 57

global
def

thread-local

|
binding
set!

shared

I
single

sync

|
|
async

atom agent

|
multiple

dosync
ref

Thursday, May 20, 2010

58

Summary

Built on immutablity from the ground up
Powerful collections
Extensive sequence library
Built-in concurrency primitives

Thursday, May 20, 2010

59

r

-

start date

~N

J

r

-

start date

~N

J

Ol 05 2010
Ol 05 2010
Ol 09 2010

Thursday, May 20, 2010

60

Java Integration

Clojure — Java

(new java.lang.String "Hello")
(java.lang.String. "Even quicker™)
(java.1io.File/separator)

(import '(java.io InputStream File))
(File/separator)

(. System/out println "Hello")
(.println System/out "Hello")

(defn blank? [s] (every? #(Character/isWhitespace %) s))
(blank? "some string") ;; false
(blank? "") ;; true

(every? #(instance? java.util.Collection %)

(L1 2] (1 2) #41 23))

;; true

Thursday, May 20, 2010

62

Clojure < Java

(import '(java.util Vector Collections))

(def java-collection (Vector.))
(doto java-collection

(.add "Gamma™)

(.add "Beta™)

(.add "Alpha™))
;3 #<Vector [Gamma, Beta, Alpha]>

(defn make-comparator [compare-fn]
(proxy [java.util.Comparator] []
(compare [left right] (compare-fn left right))))

(Collections/sort java-collection
(make-comparator #(. %1 compareTo %2)))

;5 #<Vector [Alpha, Beta, Gamma]>

Thursday, May 20, 2010

63

Clojure « Java

package com.1innoq.test;

public interface ClojureInterface {
String reverse(String s);

¥

(ns com.1innoqg.test)

(gen-class

:name com.1nhnoq.test.ClojureClass
:implements [com.innoq.test.Clojurelnterface]
:prefix class-)

(defn class-reverse
[this s]
Capply str (reverse s)))

package com.innoq.test;
public class ClojureMain {
public static void main(String[] args) {
Clojurelnterface cl = new ClojureClass();
System.out.println("String from Clojure:

+ cl.reverse("Hello, World"));

Thursday, May 20, 2010

64

Core Blogs

http://clojure.org/ http://www.bestinclass.dk/index.php/blog/
clojure@googlegroups.com http://stuartsierra.com/

#clojure freenode http://technomancy.us/

build.clojure.org http://kotka.de/blog/
http://en.wikibooks.org/wiki/Clojure http://blog.fogus.me/

http://www.assembla.com/wiki/show/clojure/Getting Started

http://github.com/relevance/labrepl

Screencasts

http://technomancy.us/ |36
http://peepcode.com/products/functional-programming-with-clojure

http://vimeo.com/channels/fulldisclojure

Books

The Little Schemer

Stuart Halloway . Paul Graham

Thursday, May 20, 2010

65

http://build.clojure.org/
http://build.clojure.org/

LAST NIGHT I DRIFTED OFF || [f AT ONCE, JUST LIKE THEY SAID, T FELT A ff TRULY, THIS WAS @0 75 No
WHILE READING A LlsPBoon] | GREAT ENUGHTENMENT. T 5w THE NAKED | THE LANGUAGE 13 NOL.
| || STRUCTURE OF LisP CooE: UNFOLD BEFORE ME-[| FROML WHICH THE -
— e e ——= - GoDS WRouGHT | [T5 NOT?

THE UNIVERSE /@ iy

| =S | 1 vea osENsIBLY, YES.
SUDDENLY, I WAS BATHED || [fSyNTAX FADED, AND I SWAM IN THE PURITY 0F | HONESTLY. WE HACKED MosT
QUANTIFIED CONCEPTION. OF IDEAS MANIFEST. r‘f OF IT TOGETHER WITH PERL.

http://xkcd.com/224/

’/@ HUH?

|IN A SUFFUSION OF BLUE. |

Stefan Tilkov
stefan.tilkov@innog.com
http://www.innoq.com/blog/st/
Twitter: stilkov

Thursday, May 20, 2010

