
REST for SOA
Stefan Tilkov, innoQ Deutschland GmbH

stefan.tilkov@innoq.com

Copyright (c) 2007 innoQ

Contents

An Introduction to REST

Why REST Matters

REST And Web Services

Recommendations

Copyright (c) 2007 innoQ

Stefan Tilkov

http://www.innoQ.com

http://www.InfoQ.com

stefan.tilkov@innoq.com

http://www.innoq.com/blog/st/

http://www.soa-expertenwissen.de

Copyright (c) 2007 innoQ

What is REST?

REpresentational State Transfer

Described by Roy Fielding in his
dissertation

One of a number of “architectural styles”

Architectural principles underlying HTTP,
defined a posteriori

See: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Copyright (c) 2007 innoQ

REST Explained
in 5 Easy Steps

Copyright (c) 2007 innoQ

0. Prerequisite:
Let’s equate “REST” with
“RESTful HTTP usage” ...

Copyright (c) 2007 innoQ

1. Give Every “Thing” an ID

http://example.com/customers/1234

http://example.com/orders/2007/10/776654

http://example.com/products/4554

http://example.com/processes/sal-increase-234

Copyright (c) 2007 innoQ

2. Link Things To Each Other

<order self=’http://example.com/customers/1234’>
 <amount>23</amount>
 <product ref=’http://example.com/products/4554’ />
 <customer ref=’http://example.com/customers/1234’ />
</order>

Copyright (c) 2007 innoQ

3. Use Standard Methods

GET retrieve information, possibly cached

PUT Update or create with known ID

POST Create or append sub-resource

DELETE (Logically) remove

Copyright (c) 2007 innoQ

4. Allow for Multiple
 “Representations”

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

GET /customers/1234
Host: example.com
Accept: text/x-vcard

<customer>...</customer>

begin:vcard
...
end:vcard

Copyright (c) 2007 innoQ

5. Communicate Statelessly
GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

time

<customer><order ref=’./orders/46’</customer>

GET /customers/1234/orders/46
Host: example.com
Accept: application/vnd.mycompany.order+xml

<order>...</order>

shutdown
update software
replace hardware
startup

Copyright (c) 2007 innoQ

REST (Pragmatic Version)

1 Give everything an ID

2 Link things to each other

3 Use standard methods

4 Allow for multiple representations

5 Communicate Statelessly

Copyright (c) 2007 innoQ

REST (Academic Version)

1 Identifiable resources

2 Hypermedia as the engine of application state

3 Uniform interface

4 Resource representations

5 Stateless communication

Copyright (c) 2007 innoQ

Some HTTP features
Verbs (in order of popularity):

‣ GET, POST

‣ PUT, DELETE

‣ HEAD, OPTIONS, TRACE

Standardized (& meaningful) response codes

Content negotiation

Redirection

Caching (incl. validation/expiry)

Compression

Chunking

Copyright (c) 2007 innoQ

Web Services
A separate interface
(façade) for each purpose

As known CORBA,
DCOM, RMI/EJB

Often used for SOA
(“CORBA w/ angle
brackets)

Application-specific
protocol

+ getOrders()

+ submitOrder()

+ getOrderDetails()

+ getOrdersForCustomers()

+ updateOrder()

+ addOrderItem()

+ cancelOrder()

+ cancelAllOrders()

OrderManagementService

+ getCustomers()

+ addCustomer()

+ getCustomerDetails()

+ updateCustomer()

+ deleteCustomer()

+ deleteAllCustomers()

CustomerManagementService

Copyright (c) 2007 innoQ

Contribution to the Net’s Value

2 URLs

‣ http://example.com/customerservice
‣ http://example.com/orderservice

1 method

‣ POST

Copyright (c) 2007 innoQ

Web Services Issues

Web Services are “Web” in name only

WS-* tends to ignore the web

Abstractions leak, anyway

Protocol independence is a bug, not a
feature

Copyright (c) 2007 innoQ

Designing a RESTful application

Identify resources & design URIs

Select formats (or create new ones)

Identify method semantics

Select response codes

See: http://bitworking.org/news/How_to_create_a_REST_Protocol

Copyright (c) 2007 innoQ

REST Approach
A single generic (uniform)
interface for everything

Generic verbs mapped to
resource semantics

A standard application
protocol (e.g. HTTP)

Copyright (c) 2007 innoQ

Millions of URLs

‣ every customer
‣ every order

4-7 supported methods per resource

‣ GET, PUT, POST, DELETE
‣ TRACE, OPTIONS, HEAD

Cacheable, addressable, linkable, ...

Contribution to the Net’s Value

Copyright (c) 2007 innoQ

RESTful HTTP Advantages

Universal support (programming languages,
operating systems, servers, ...)

Proven scalability

“Real” web integration for machine-2-machine
communication

Support for XML, but also other formats

Copyright (c) 2007 innoQ

Why You Should Care

Copyright (c) 2007 innoQ

WS-* Roots

The Enterprise

RPC, COM, CORBA, RMI, EJB

Transaction Systems

Controlled Environment

Top-down Approach

Copyright (c) 2007 innoQ

REST Roots

The Internet

Text formats

Wire Standards

FTP, POP, SMTP

Bottom-up Approach

Copyright (c) 2007 innoQ

Internet vs. Enterprise

Copyright (c) 2007 innoQ

What’s the difference
between the Internet and a

typical enterprise?

Copyright (c) 2007 innoQ

Internet vs. Enterprise

The other is a worldwide, publicly accessible
series of interconnected computer networks
that transmit data by packet switching using
the standard Internet Protocol (IP).

One is a gigantic, uncontrollable anarchy of
heterogeneous systems with varying quality
that evolve independently and constantly get
connected in new and unexpected ways.

Copyright (c) 2007 innoQ

If web services are
supposed to work on

Internet scale, they should
be inspired by the Web, not

by Distributed Objects

Copyright (c) 2007 innoQ

Quotes

Copyright (c) 2007 innoQ

Frankly, if I were an enterprise architect today, and I
were genuinely concerned about development
costs, agility, and extensibility, I’d be looking to solve
everything I possibly could with dynamic languages
and REST, and specifically the HTTP variety of
REST. I’d avoid ESBs and the typical enterprise
middleware frameworks unless I had a problem
that really required them [...]. I’d also try to
totally avoid SOAP and WS-*.

Steve Vinoski, formerly IONA
http://steve.vinoski.net/blog/2007/10/04/the-esb-question/

Copyright (c) 2007 innoQ

“No matter how hard I try, I still think the WS-* stack
is bloated, opaque, and insanely complex. I think it
is going to be hard to understand, hard to
implement, hard to interoperate, and hard to
secure.”

Tim Bray, XML Co-inventor
http://www.tbray.org/ongoing/When/200x/2004/09/18/WS-Oppo

Copyright (c) 2007 innoQ

“Show me the interoperable, full and free
implementations of WS-* in Python, Perl, Ruby and
PHP. You won’t see them, because there’s no
intrinsic value in WS-* unless you’re trying to suck
money out of your customers. Its complexity serves
as a barrier to entry at the same time that it creates
‘value’ that can be sold.”

Mark Nottingham, ex BEA, now Yahoo!,
former WS-Addressing WG Chair

http://www.mnot.net/blog/2006/05/10/vendors

Copyright (c) 2007 innoQ

If you’re ready for REST I suggest you jump on
board right away and get ahead of the curve […]
You’ll have to train your developers in REST
principles. [...] You definitely need to provide
guidance to your people. What you want to do is
work to the point where REST becomes the
default for all your distributed applications.

Anne Thomas Manes, Burton Group
http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_gci1256796,00.html

Copyright (c) 2007 innoQ

“Want to be cool? Learn REST.
Want a career? Learn WS.”

Steve Jones, Cap Gemini
http://service-architecture.blogspot.com/2006/11/want-to-be-cool-learn-rest-want-career.html

Copyright (c) 2007 innoQ

Recommendations

Copyright (c) 2007 innoQ

1.
Be skeptical of the WS-*
value-add and pseudo-

abstractions

Protocol
Independence

Transactions

Reliability

Security

Application-
Specific Interfaces

Orchestration

Choreography

Copyright (c) 2007 innoQ

2.
Don’t be afraid to make

decisions and depend on
standards

HTTP, URI, XML, HTML XML + JMS

SMTP + IMAP

Copyright (c) 2007 innoQ

3.
Understand and exploit the
Web’s architecture to your

benefit
Standardized
Identification

Caching

Interoperability

Scalability

Universal
Accessibility

Hypermedia

UI/API Integration

Copyright (c) 2007 innoQ

Stefan Tilkov

Architectural Consulting

SOA

MDA MDSD

WS-* REST

MDE

J(2)EE RoR .NET

http://www.innoq.com/blog/st/

http://www.innoq.com

Thank you!
Any questions?

Slides online

