
Metaprogramming with Ruby
Stefan Tilkov • innoQ Deutschland GmbH • stefan.tilkov@innoq.com

How to write code that writes code – and why this is a good idea

Contents

1. Motivation

2. (Very Brief) Ruby Intro

3. Ruby Metaprogramming Features

4. Examples

2

Motivation

1. Languages are not Equal

2. Mindless Repetition is Productivity’s
Natural Enemy

3. Language Influences Thought

4. Languages Should Support Growth

3

Machine Code

Assembler

C

C++

Java

Python

Ruby

Scheme/Lisp

All Turing-complete: every
task doable in all of them

Big differences in runtime
behavior (speed, efficiency)

Even bigger differences in
development support

1. Languages are not Equal

4

You can program C in OO
style … but why would

you?

5

“Any sufficiently complicated
C or Fortran program
contains an ad-hoc,
informally-specified, bug-
ridden, slow implementation
of half of CommonLisp.”

Philip Greenspun's Tenth Rule of Programming
http://philip.greenspun.com/research/

6

2. Repetition is Productivity’s
 Natural Enemy

Repetition equals redundancy

Manual pattern execution introduces
errors ...

... and spoils the fun

Changes become harder, quality
decreases

7

3. Language Influences Thought

You only apply patterns and concepts
that you know of

A programming language’s capabilities
influence the way you express a
solution

Anything out of the ordinary seems
“weird”

8

“We cut nature up, organize it into
concepts, and ascribe significances
as we do, largely because we are
parties to an agreement to organize it
in this way — an agreement that
holds throughout our speech
community and is codified in the
patterns of our language.”

Whorf, Benjamin (John Carroll, Editor) (1956). Language, Thought,
and Reality: Selected Writings of Benjamin Lee Whorf. MIT Press.

“Sapir-Whorf Hypothesis” (note: now disputed);
see also http://en.wikipedia.org/wiki/Sapir-Whorf_hypothesis

9

Blub falls right in the middle of the abstractness
continuum... As long as our hypothetical Blub
programmer is looking down the power continuum,
he knows he's looking down. Languages less
powerful than Blub are obviously less powerful,
because they're missing some feature he's used to.
But when our hypothetical Blub programmer looks
in the other direction, up the power continuum, he
doesn't realize he's looking up. What he sees are
merely weird languages... Blub is good enough for
him, because he thinks in Blub.

Paul Graham, “Beating the Averages”
http://www.paulgraham.com/avg.html

10

4. Languages Should Support Growth
General purpose programming languages
can cover general cases

Abstractions match every domain

Key idea of DSLs: A language suitable to
the specific problem domain

A growable language enables definition
of new constructs that look and feel as if
they were part of the language

11

Ruby Intro

12

Statements & Control Flow

puts "Hello World"

num = 5

if num > 4 then
 puts "num > 4"
elsif num <= 4 then
 puts "num <= 4"
else
 puts "WTF?"
end

puts "num is 5" unless num != 5

13

Loops

for i in (1..10) do
 puts i
end

i = 0
while i < 10 do
 puts i
 i += 1
end

14

Comments

One line comment
=begin
A comment spanning multiple lines
=end

15

Iteration & Blocks

don't do this
array = ["alpha", "beta", "gamma"]
for i in 0..2 do
 puts array[i]
end

much better
array.each { | elem | puts elem }

16

Iteration & Blocks (2)

1.upto(10) { | x | puts x }
1.upto(10) { | x | puts "Count: #{x}" }
1.upto(10) do | x |
 puts "Count: #{x}"
end

17

Hashes

hash = { "one" => '1', "two" => '2', "three" => '3'}
puts hash["one"]

table = { "p1" => { "last" => "Schulze", "first" =>
"Hans"},
 "p2" => { "last" => "Meier", "first" => "Klaus"}
 }
puts table["p1"]
puts table["p1"]["first"]

require 'pp'
pp table
pp table["p1"]

18

Methods

def mymethod(a, b, c)
 puts "a = #{a}, b = #{b}, c=#{c}"
end

mymethod(1, 2, 3)
mymethod 1, 2, 3

19

Classes
class Person
 @@people_count = 0

 def initialize(first, last)
 @first = first
 @last = last
 @id = @@people_count
 @@people_count += 1
 end

 def to_s
 "#{@last}, #{@first}"
 end

end

p = Person.new("John", "Doe")
puts p

20

Inheritance
class Friend < Person
 def initialize(first, last, nick)
 super(first, last)
 @nick = nick
 end

 def drink
 puts "Cheers from #{@nick}"
 end

 def to_s
 "#{super.to_s}, a.k.a. #{@nick}"
 end
end

f = Friend.new("Jack", "Daniels", "Buddy")
puts f
f.drink

21

Modules
module M1
 def self.module_method(s)
 puts "Module method: #{s}"
 end

 def mixin
 puts "Value of a: #{@a}"
 end
end

M1.module_method("hello")

class X
 include M1
 def initialize
 @a = 4711
 end
end

x = X.new
x.mixin

22

“Getters” and “Setters”

class AttributeHolder
 def name=(n)
 @name = n
 end

 def name
 @name
 end
end

ah = AttributeHolder.new
ah.name = "AH Test"
puts ah.name

23

“Getters” and “Setters” (2)
class AttributeHolder2
 def name=(n)
 @name = n
 end

 def name
 @name
 end

 def first_name=(n)
 @first_name = n
 end

 def first_name
 @first_name
 end
end

ah = AttributeHolder2.new
ah.name = "AH Test"
ah.first_name = "AH First"
puts ah.name, ah.first_name

24

Attribute Accessor

class AttributeHolder3
 attr_accessor :name, :first_name
end

ah = AttributeHolder3.new
ah.name = "AH Test"
ah.first_name = "AH First"
puts ah.name, ah.first_name

25

Ruby Metaprogramming

26

Metaprogramming

Programs that write (or modify)
programs

Including, but not limited to, code
generation

Blurring boundaries between
development time & run time

Linked to reflective capabilities

27

Structures

Person = Struct.new "Person", :first_name, :last_name
p1 = Person.new
p1.last_name = "Doe"
p1.first_name = "John"
p1 # => #<struct Struct::Person first_name="John", last_name="Doe">

p2 = Person.new("Jane", "Doe")
p2 # => #<struct Struct::Person first_name="Jane", last_name="Doe">

28

Creating Objects and
Classes by Name

s = Kernel.const_get('String').new "Teststring" # => "Teststring"
s.class # => String

Test = Class.new # => Test
Test.class_eval do
 def test1
 "test1"
 end
end
Test.new.test1 # => "test1"

Test.class_eval do
 define_method "test2" do
 "test2"
 end
end
Test.new.test2 # => "test2"

29

Individual Object Methods
t1 = Test.new
t2 = Test.new
t1.standard_method # => "standard_method; self: #<Test:0x16ee0>"
t2.standard_method # => "standard_method; self: #<Test:0x16e04>"

class << t1
 def object_method
 "object_method; self: #{self}"
 end
end

t1.object_method # => "object_method; self: #<Test:0x16ee0>"
t2.object_method # => NoMethodError: undefined method
 ‘object_method’ for #<Test:0x16e04>

30

Classes & Constants

cls = Class.new
cls.class_eval do
 define_method :test_method do
 "test_method"
 end
end

cls.new.test_method # => "test_method"
cls # => #<Class:0x1b2b0>
SomeArbitraryConstant = cls
cls # => SomeArbitraryConstant

31

‘eval’ Methods

eval evaluates a string as Ruby
code, receives binding

instance_eval evaluates block in context
of receiver

class_eval (a.k.a
module_eval)

evaluates block in context
of class or module, usually

used to add methods

32

Runtime Definitions

class TestClass
 puts "before definition, self: #{self}"

 def my_instance_method
 puts "my_instance_method, self: #{self}"
 end

 puts "after definition, self: #{self}"
end

>> before definition, self: TestClass
>> after definition, self: TestClass
>> my_instance_method, self: #<TestClass:0x19f00>

33

Runtime Definitions (2)

TestClass.new.my_instance_method

class TestClass
 def self.my_class_method
 puts "my_class_method, self: #{self}"
 end

 my_class_method
end

>> my_class_method, self: TestClass

34

Methods Adding Methods
class Meta
 def initialize(value)
 @value = value
 end

 def self.add_multiplier(factor)
 define_method "times#{factor}" do
 @value * factor
 end
 end

 add_multiplier 5
end

Meta.new(3).times5 # => 15

35

Methods Adding Methods (2)
module Multiplication

 module ClassMethods
 def new_class_m
 puts "new_class_m - self: #{self}"
 end

 def add_multiplier(factor)
 define_method "times#{factor}" do
 @value * factor
 end
 end

 end

 def self.included(clazz)
 clazz.extend(ClassMethods)
 end

end

class MultiplyTest
 include Multiplication

 def initialize(value)
 @value = value
 end

 add_multiplier 3
end
MultiplyTest.new(3).times3 # => 15

36

(Re-)Opening Classes
def to_label(s)
 (s.split '_').map {|c| c.capitalize}.join ' '
end

to_label("LONG_UNREADBLE_CONSTANT") # => "Long Unreadble Constant"
to_label("unwieldy_name") # => "Unwieldy Name"

class String
 def to_label
 (self.split '_').map {|c| c.capitalize}.join ' '
 end
end

"LONG_UNREADBLE_CONSTANT".to_label # => "Long Unreadble Constant"
"unwieldy_name".to_label # => "Unwieldy Name"

37

(Re-)Opening Classes

def array_shuffle!(array)
 0.upto(array.length-1) do |i|
 r = (rand * array.length).to_i
 array[i], array[r] = array[r], array[i]
 end
 array
end

array = %w(7 8 9 10 B D K A)
array_shuffle!(array)
=> ["A", "D", "9", "7", "10", "8", "K", "B"]

class Array
 def shuffle!
 0.upto(length-1) do |i|
 r = (rand * length).to_i
 self[i], self[r] = self[r], self[i]
 end
 self
 end
end

array = %w(7 8 9 10 B D K A)
array.shuffle!
=> ["9", "B", "K", "A", "8",
 "10", "7", "D"]

38

method_missing
class Recorder
 def method_missing(name, *args)
 @calls ||= []
 @calls << { :name => name, :args => args}
 end

 def print_calls
 @calls.each do |call|
 puts "#{call[:name]}(#{call[:args].join(', ')})"
 end
 end
end

r = Recorder.new
r.first_call 1, 2, 3
r.second_call "Hello"
r.third_call :bumm
r.print_calls
=>
>> first_call(1, 2, 3)
>> second_call(Hello)
>> third_call(bumm)

39

Examples

40

Rails ActiveRecord
class Person < ActiveRecord::Base
 has_many :adresses
 has_one :home_address, :class_name => "Address"
 belongs_to :region
end

class Region
 has_many :people
end

class Address
 belongs_to :person
end

41

Generated Methods
class Project < ActiveRecord::Base

 belongs_to :portfolio
Project.portfolio
Project.portfolio=(portfolio)
Project.portfolio.nil?

 has_one :project_manager
Project.project_manager,
Project.project_manager=(project_manager)
Project.project_manager.nil?

 has_many :milestones

Project.milestones.empty?
Project.milestones.size
Project.milestones
Project.milestones<<(milestone)
Project.milestones.delete(milestone)
Project.milestones.find(milestone_id)
Project.milestones.find(:all, options)
Project.milestones.build,
Project.milestones.create

 has_and_belongs_to_many :categories

Project.categories.empty?
Project.categories.size
Project.categories
Project.categories<<(category1)
Project.categories.delete(category1)

end

42

acts_as_state_machine
class Cat < ActiveRecord::Base
 acts_as_state_machine :initial => :sheltered, :column => ’status’

 state :sheltered #Initial state - Cat is at the shelter being cared for
 state :incare # Cat is with a shelter appointed carer (nursing the cat to health)
 state :returned # Owner located and cat returned
 state :housed # New owner is found for cat

 event :shelter do
 transitions :to => :sheltered, :from => :incare
 end

 event :care do
 transitions :to => :incare, :from => :sheltered
 end

 event :return do
 transitions :to => :returned, :from => :sheltered
 transitions :to => :returned, :from => :incare # Cat can be given straight from care
 end

 event :house do
 transitions :to => :housed, :from => :sheltered
 transitions :to => :housed, :from => :incare
 end
end

43

Atom with XML Builder

see: http://intertwingly.net/stories/2005/09/21/app/views/blog/atom.rxml

xml.instruct! 'xml-stylesheet', :href=>'/stylesheets/atom.css', :type=>'text/css'

xml.feed :xmlns=>'http://www.w3.org/2005/Atom' do
 xml.div :xmlns=>'http://www.w3.org/1999/xhtml', :class=>'info' do
 xml << <<-EOF
 This is an Atom formatted XML site feed.
 It is intended to be viewed in a Newsreader or syndicated to another site.
 Please visit atomenabled.org for more info.
 EOF
 end

 xml.title 'Sam Ruby'
 xml.link :rel=>'self',
 :href=>url_for(:only_path=>false, :action=>'posts', :path=>['index.atom'])
 xml.link :href=>url_for(:action=>'posts', :path=>nil)
 xml.id :href=>url_for(:only_path=>false, :action=>'posts', :path=>nil)
 xml.updated Time.now.iso8601
 xml.author { xml.name 'Sam Ruby' }

 @entries.unshift @parent if @parent
 @entries.each do |entry|
 xml.entry do
 xml.title entry.title
 xml.link :href=>url_for(entry.by_date)
 xml.id entry.atomid
 xml.updated entry.updated.iso8601
 xml.author { xml.name entry.author.name } if entry.author
 xml.summary do
 xml.div :xmlns=>'http://www.w3.org/1999/xhtml' do
 xml << entry.summary
 end
 end if entry.summary
 xml.content do
 xml.div :xmlns=>'http://www.w3.org/1999/xhtml' do
 xml << entry.content
 end
 end
 end
 end

end 44

Summary

Ruby has a rich set of
metaprogramming features - tied into
its object model

Metaprogramming enables another
level of abstraction

Metaprogramming is fun!

45

Stefan Tilkov

Architecture Consulting
SOA
MDA MDSD

WS-* REST
MDE

J(2)EE RoR .NET

http://www.innoq.com/blog/st/

http://www.innoq.com
46

http://www.innoq.com/resources/ruby-metaprogramming
More information and resources:

