) EvuroClojure

First 2-day, full-blown conference in Europe
for the Clojure community

maY24-25,2012 e LONDON™\'

Clojure for OOP folks

Stefan Tilkov | @stilkov | innoQ

innoQ

Friday, May 25, 12 1

Motivation

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

Syntax Idioms

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

OOP Thinking

model domains with classes & interfaces
encapsulate data in objects
prefer specific over generic solutions

explicitly provide for generic access

Namespaces

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

RS, N

3
=i > o

éih“'b . ~
l u S I -
PR g
oo

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

refer: import names

.exclude [], :only [], :rename {...:...}

require: (re-)load libs

:reload, :reload-all, :as

use: require + refer

.exclude [], :only [], :rename{...:...}

ns: create namespace

:require, :refer, :use, :gen-class

Handle var name clashes
Reduce dependencies

Dynamic reloading
Namespace aliases

Convenient REPL usage

Flexible handling in sources
Provide encapsulation

Friday, May 25, 12

refer: import names

.exclude [], :only [], :rename {...:...}

require: (re-)load libs

:reload, :reload-all, :as, :refer

ns: create namespace

:require, :refer, :use, :gen-class

Handle var name clashes
Reduce dependencies

Dynamic reloading

Namespace aliases
Convenient REPL usage

Flexible handling in sources
Provide encapsulation

Friday, May 25, 12

(ns com.example.some-ns
"Well-documented ns"™
(:use [com.example.nl :only [xyz]])
(:require [com.example.nsZ2 :as nZ2]))

(defn ...)
(defmacro ...)
(defmulti ...)

(defmethod ...)

(defn- ...)
(def A:private ...)
(def A:dynamic ...)

Friday, May 25, 12 9

Friday, May 25, 12 10

How to choose a datatype

© 2012 innoQ Deutschland GmbH

Do you need a
named type or only
an Instance of an
anonymous type?

extend a Java class
or implement any
intertaces?

"I need to define
a type In Clojure”

No

Instance of
anonymous type

Will the ty,

participate In Clojure Named
protocols or be No Use a type
associated w/

Do you need to
extend an existing
base class?

Do you need to be
able 1o refer 10 the
class statcally from

Lo

Java? Yes T
Is your class modeling
a domain value — thus
penefiing from hash- Use reity

map-like functionality

and semantics? Yes

- Sh Eh Gh G5 GRS SR Gh SR 4R Gh D Gh G Gh Gh G5 Gh b G5 Gh G5 G Gh b Gh G SR 5 G5 Gh b G5 Gh G5 G5 Gh Gh 4B G5 SR 4R G5 aB an an .

”

define multipie
constructors?

<% No define any static

metneas?

Y
/ The 'Interop Zone'
l v |
‘ 1
1
1
No Yes : (Use proxy) :
1 you ne :
' Do you need to methods In addition -
: extend an existng No » 10 those defined by)
i base class? Intertaces you'e 1
| menting2 :
Use ‘ |
defrecord | 1
1
: Yes :
Y | ;
1
Use H Yes 1
deftype | 1
| :
1
s Yes Yes !
| |
Yes : 1
No | Do you need to Do you need 1o -
| |
- i
-)
\
\ ’

A

T e T T T T T T T T T TT"TS5"

No

Do you need to define
mutable nelas?

https://github.com/cemerick/clojure-type-selection-flowchart/
© 2011 Chas Emerick, cemerick.com

© 2012 innoQ Deutschland GmbH
Friday, May 25, 12 12

"I need 10 define
a type in Clojure”

Vil the type need 10
extend a Java class
or implement any
intertaces?

Do you need a
named type or only
an Instance of an
anonymous type?

Instance of

Will the type
participate In Clojure
protocols or be
associated w/
performance-
sensitive code?

extend an existing
base class?

Do you need 1o be

able o refer 1o the

class statcally from
Java?

IS your class modeling
a comain value — thus
penefiiing from hash-
map-like functionality

and semantics? Yes

- T .] -

' The 'Interop Zone'

L

-~

Do you ne
methods In addition
10 those defined by

Interfaces you're
mplementing?

u need to
an existing

Record

Type

Do you need to
cefine multipie
CONStructors?

Do you need 10
define any static
metnoas?

-

-~ ’

T ————————— -

Do you need to define
mutable nelas?

https://github.com/cemerick/clojure-type-selection-flowchart/
© 2011 Chas Emerick, cemerick.com

Friday, May 25, 12 13

Function

Multimethod

Protocol

Function

Multimethod

Friday, May 25, 12

15

Map

© 2012 innoQ Deutschland GmbH

Function

Friday, May 25, 12

16

PDS

© 2012 innoQ Deutschland GmbH

Function

Friday, May 25, 12

17

Data structures vs. objects

public class Point { (def pl [3 4]1)
private final double x;
private final double y;

public Point(double x, double y) {
this.x = x;
this.y = y;
¥
¥

Point pl = new Point(3, 4);

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

18

Data structures vs. objects

(def pl1 [3 4])

Immutable
Reusable

Compatible

Data structures vs. objects

import static java.lang.Math.sqgrt;

public class Point {
private final double x;
private final double vy;

public Point(double x, double y) {
this.x = x;
this.y = vy;

h

public double distanceTo(Point other) {
double cl = other.x - this.x;

double cZ2 = other.y - this.y;
return sqrt(cl * cl1 + c2 * c2);

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

20

Data structures vs. objects

(import-static java.lang.Math sqgrt)

(defn distance
[[x1 y1] [x2 y2]]
(let [cl (- x2 x1)
c2 (- y2 yl)]
(sgrt (+ (* c1 cl1) (* c2 c2)))))

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

Data structures vs. objects

(defn rand-seq [1imit]
(repeatedly #(rand-int 1Timit))D

infinite randoms

(take 10| (partition 2 (rand-seq 10))D
pairs of random ints

10 random points

;(36) (61) (@5 (@7 (38 (06) (16) (76) (01 (89)

Friday, May 25, 12 22

Data structures vs. objects

(defn circumference
[vertices]
(reduce + (map distance |[vertices| (drop 1 |(cycle vertices)DD))

infinite repetition

all seq without first

-
N

(G 6 DJE D[© 7 38 ©6) A6 T 6)@1) (3 I
L(CHD) [CID)] [CRIIERIRCENERINCAIRCESRCIINER)D

-
N

;58.00411369758525

Friday, May 25, 12 23

asSSoC
assocC-1n
butlast
concat
conj

cons

count
cycle
difference
dissoc
distinct
distinct?
drop-last
empty
empty?
every?
filter
first
flatten

group-by
1nterleave
1nterpose
1ntersection
1nto

join
lazy-cat
mapcat

merge
merge-with
not-any?
not-empty?
not-every?
nth
partition
partition-all
partition-by
peek

pop

popy
project
remove
replace
rest

rseq
select
select-keys
shuffle
some
split-at
split-with
subvec
take
take-last
take-nth
take-while
union
update-1in

Friday, May 25, 12

24

(def projects #{{:

Maps

_i-d lllll,

:kind :time-material,

:description "Consulting for BigCo",
:budget 25000,
:team [:joe, :chuck, :james]}

:1d "2",

:kind :fixed-price,
:description "Development for Startup",

:budget 100000,
:team [:john, :chuck, :james, :bill]}

:1d "3",

:kind :fixed-price,

:description "Clojure Training",
:budget 3000,

‘team [:joe, :john]}})

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

25

Map access

(defn all-members
[projects]
(reduce conj #{}|(flatten|(map :team projects))D)

seq of vectors

seq of members with duplicates

set of all team members

(all-members projects)

;#{:chuck :joe :james :john :bill}

Friday, May 25, 12 26

Map access & coupling

(defn all-members
[projects]
(reduce conj #{} (flatten (map :team projects))))

#{{:1d "2",
:kind flxed prlce
:description "Development for Startup”,
:budget 100000,
:team [:john, :chuck, :james, :bill]}}

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

Map access & coupling

(defn all-members

[projects]
(conj #{} ((:team |projects))))
#{{ "ZH,
n.*Development for Startup”,
100000,
:team 1T , , , 11

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

—

[{:kind "fixed-price",

:team ["john" "chuck" "james" "bill"],

:budget 100000,

:id "2",

:description "Development for Startup"}
{:kind "fixed-price",

:team ["joe" "john"],

:budget 3000,

:1d "3",

:description "Clojure Training"}
{:kind "time-material",

:team ["joe" "chuck" "james"],

:budget 25000,

:id "1",

:description "Consulting for BigCo"}]

"R~,~__‘>

© 2012 innoQ Deutschland GmbH

(json-str)

(read-json)

—

[{"kind":"fixed-price",
"team":["john", "chuck", "james",

llb_i-'l-'l-ll] ,
"budget" :100000,
ll_i_d" : HZ" ,
"description":"Development for Startup"},

{"kind":"fixed-price",

"team":["joe", "john"],

"budget" :3000,

"id":"3",

"description":"Clojure Training"},
{"kind":"time-material",

"team":["joe", "chuck", "james"],

"budget" :25000,

"id" "1,

"description":"Consulting for BigCo"}]

-

Friday, May 25, 12

29

(ns com.example.some-ns
"Well-documented ns"™
(:use [com.example.nl :only [xyz]])
(:require [com.example.nsZ2 :as nZ2]))

(defn ...)
(defmacro ...)
(defmulti ...)

(defmethod ...)

(defn- ...)
(def A:private ...)

Friday, May 25, 12 30

Implementation

Interface

O

Functions
w/ simple data

Friday, May 25, 12

31

Closures

(defn make-1d
[prefix 1id]
(join "-" [prefix (Long/toString 1id 16)]))

(defn 1d-generator
([prefix]
(1id-generator prefix 0))
([prefix v]
(let [cnt (atom v)]
(fn [] (make-1id prefix (swap! cnt inc))))))

(def prj-id (id-generator "prj"))

(prj-id)
;5 prj-1"
(prj-id)
;5 prj-2”
(prj-id)
;; "pr'j—3"

(defn make-project [map]
(assoc map :1d (prj-id)))

© 2011 innoQ Deutschland GmbH

Friday, May 25, 12

33

Meet Miss Grant

T TR
Reset Events:
unlockDoor doorOpened
_ lockPanal) s aisiait i
doorClose
lightOn |drawerOpened anelClosed

[waitingForDrawer) (waitingForLight)

© 2012 innoQ Deutschland GmbH

drawerOpened |lightOn

Y
(" unlockedPanel)

unlockPanel
. lockDoor P

Friday, May 25, 12

1592379

http://www.informit.com/articles/article.aspx?p

34

(defn
(defn
(defn
(defn

unlock-door [] (println "Unlocking door"))
lock-door [] (println "Locking door™))
unlock-panel [] (println "Unlocking panel™))
lock-panel [] (println "Locking panel™))

(def fsm
(make-fsm :1idle :doorOpened

{:1idle
:active
:wailtingForlLight

:waitingForDrawer
:unlockedPanel

© 2012 innoQ Deutschland GmbH

[[unlock-door lock-panel]

{:door(Closed :active}]

[[] {:drawerOpened :waitingForlLight
:11ghtOn :waitingForDrawer}]

[] {:11ghtOn :unlockedPanel}]

(] {:drawerOpened :unlockedPanel}]

‘unlock-panel lock-door]

{:panelClosed :1idle}]}))

Friday, May 25, 12

35

(defn make-fsm
"creates an fsm with initial state s@, a reset event, and a map of transitions.
[state-transitions] must be a map of state->[[fl f2 ...] {e@->s0, el->s2, ...}]"
[sO reset-event state-transitions]
(let [s (atom s@)]
(fn [evt]
(1f (= evt reset-event)
(do
(println "Reset event, returning to " s0)
(swap! s (fn [_] s©)))
(let [[actions transitions] (state-transitions @s)]
(i1f-let [new-state (transitions evt)]
(do
(println "Event" evt
(doseqg [f actions] (f))
(swap! s (fn [_] new-state)))
(println "Unexpected/unhandled event" evt "in state” @s)))))))

causes transition from" @s "to" new-state)

© 2011 innoQ Deutschland GmbH

Friday, May 25, 12 36

(def fsm
(make-fsm :1dle :doorOpened

{:1dle [[unlock-door lock-panel]
{:doorClosed :active}]
ractive [[] {:drawerOpened :waitingForlLight

:11ghtOn :waitingForDrawer}]

:waitingForlLight [[1 {:11ghtOn :unlockedPanel}]
:waitingForDrawer [[] {:drawerOpened :unlockedPanel}]
-unlockedPanel [unlock-panel lock-door]

{:panelClosed :1dle}]}))

(dorun (map fsm [:doorClosed :1ightOn :drawOpened :panelClosed]))

;3 Event :doorClosed causes transition from :idle to :active

;3 Unlocking door

;3 Locking panel

;5 Event :1ightOn causes transition from :active to :waitingForDrawer

;3 Event :drawerOpened causes transition from :waitingForDrawer to :unlockedPanel
;; Event :panelClosed causes transition from :unlockedPanel to :idle

;3 Unlocking panel

;3 Locking door

;; Reset event, returning to :idle

© 2011 innoQ Deutschland GmbH

Friday, May 25, 12 37

Function

Multimethod

Friday, May 25, 12

38

Method problems

“Global” state
Coarse-grained re-use

Simple-minded dispatch

Methods vs. Multimethods

Methods

Multimethods

Dispatch Type

customizable

of args 1

arbitrary

" " based on type
ierarc
4 inheritance

customizable

Friday, May 25, 12

40

Multimethods

(def projects #{{:1d "1",
:kind :time-material,
:description "Consulting for BigCo",
:budget 25000,
:team [:joe, :chuck, :james]}
{:1d "2",
:kind :fixed-price,
:description "Development for Startup”,
:budget 100000,
:team [:john, :chuck, :james, :bill]}
{:1d "3",
:kind :fixed-price,
:description "Clojure Training",
:budget 3000,
:team [:joe, :john]}})

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

41

Multimethods

(defmulti expected-revenue :kind)

(defmethod expected-revenue :default [p]
(:budget p))

(defmethod expected-revenue :fixed-price [p]
(* 0.8 (:budget p)))

(defn total-expected-revenue
[projects]
(reduce + (map expected-revenue projects)))

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

© 2012 innoQ Deutschland GmbH

Multimethods

(defn make-rectangle

[[pl p2 p3 p4 :as vertices]]
(let [a (distance pl p2)
b (distance p2 p3)]
(assert (= a (distance p3 p4)))
(assert (= b (distance p4 pl)))
{:kind :rectangle, :vertices vertices,

(defn make-circle

[center r]
{:kind :circle, :center center, :r r})

(defmulti area :kind)

(defmethod area :rectangle

[{:keys [a b]}]
(* a b))

(defmethod area :circle

[{:keys [rl}]
(* PI (pow r 2)))

:a a,

b b}

Friday, May 25, 12

43

Multimethods

(defmulti circumference :kind :default :polygon)

(defmethod circumference :polygon
[{:keys [vertices]}]
(reduce + (map distance vertices (drop 1 (cycle vertices)))))

(defmethod circumference :rectangle

[{:keys [a b]}]
(* 2 (+ a b))

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

Multimethods

(defmulti draw-shape
(fn [shape canvas] [(:kind shape) (:type canvas)]))

(defmethod draw-shape :default
[shape canvas]
(str "Drawing " (:kind shape) " on " (:type canvas)))

(defmethod draw-shape [:circle :print-canvas]
[shape canvas]
"Printing a circle")

(defmethod draw-shape [:rectangle :display-canvas]
[shape canvas]
"Showing a rectangle™)

© 2012 innoQ Deutschland GmbH

Friday, May 25, 12

45

defrecord, deftype

© 2011 innoQ Deutschland GmbH

Function

Multimethod

Protocol

defrecord

+/Supports map access \
Flexible & extensible
Convenience functions
Better performance

Platform integration

Protocol support

J/

No structural sharing

Code overhead

~N

Friday, May 25, 12

48

+) x
No generic overhead
Convenience functions
Best performance

Platform integration

Protocol support

deftype
©

No structural sharing
No map access
Static & fixed

Code overhead

~N

Friday, May 25, 12

49

Protocols

(defprotocol Shape
(area [shape])
(circumference [shape]))

(defrecord Rectangle [vertices]
Shape
(area [shape] ...)
(circumference [shape] ...))

(defrecord Circle [center r]
Shape
(area [shape] ...)
(circumference [shape] ...))

Friday, May 25, 12

50

Protocols

(defprotocol ShapeStorage
(read-from [storage])
(write-to [storage shape]))

(extend-protocol ShapeStorage
XmlStorage
(read-from [storage] ...)
(write-to [storage shape] ...)
CouchDB
(read-from [storage] ...)
(write-to [storage shape] ...))

(extend-protocol ShapeStorage
String
(read-from [storage] ...)
(write-to [storage shape] ...))

Friday, May 25, 12 o1

Protocols

/Performance <>I_imited dispatch
(single arg, type-based)

Grouping

Platform integration

Friday, May 25, 12

Summary

Roadmap Recommendation

Namespaces, Functions,
Persistent Data Structures

2 Multimethods

defrecord
defprotocol

4 deftype

Thanks!

innoQ

© 2012 innoQ Deutschland GmbH

innoQ Deutschland GmbH

Krischerstr. 100

40789 Monheim am Rhein
Germany

Phone: +49 2173 3366-0
http://www.innog.com

innoQ Schweiz GmbH

Gewerbestr. 11
CH-6330 Cham
Switzerland

Phone: +41 41 743 0116
info@innoq.com

Stefan Tilkov
stefan.tilkov@innog.com
@stilkov

Friday, May 25, 12

55

