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What is REST?

REpresentational State Transfer

Described by Roy Fielding in his 
dissertation

One of a number of “architectural styles”

Architectural principles underlying HTTP, 
defined a posteriori

See: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
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REST Explained
in 5 Easy Steps
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0. Prerequisite:
Let’s equate “REST” with 
“RESTful HTTP usage” ...
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1. Give Every “Thing” an ID

http://example.com/customers/1234

http://example.com/orders/2007/10/776654

http://example.com/products/4554

http://example.com/processes/sal-increase-234
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2. Link Things To Each Other

<order self=’http://example.com/customers/1234’>
  <amount>23</amount>
  <product ref=’http://example.com/products/4554’ />
  <customer ref=’http://example.com/customers/1234’ />
</order>
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3. Use Standard Methods

GET retrieve information, possibly cached

PUT Update or create with known ID

POST Create or append sub-resource

DELETE (Logically) remove
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4. Allow for Multiple
    “Representations”

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml 
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4. Allow for Multiple
    “Representations”

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml 

<customer>...</customer>
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4. Allow for Multiple
    “Representations”

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml 

GET /customers/1234
Host: example.com
Accept: text/x-vcard 

<customer>...</customer>
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4. Allow for Multiple
    “Representations”

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml 

GET /customers/1234
Host: example.com
Accept: text/x-vcard 

<customer>...</customer>

begin:vcard
...
end:vcard
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5. Communicate Statelessly
GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml 

time

<customer><order ref=’./orders/46’</customer>
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5. Communicate Statelessly
GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml 

time

<customer><order ref=’./orders/46’</customer>

shutdown
update software
replace hardware
startup
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5. Communicate Statelessly
GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml 

time

<customer><order ref=’./orders/46’</customer>

GET /customers/1234/orders/46
Host: example.com
Accept: application/vnd.mycompany.order+xml 

<order>...</order>

shutdown
update software
replace hardware
startup
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REST (Pragmatic Version)

1 Give everything an ID

2 Link things to each other

3 Use standard methods

4 Allow for multiple representations

5 Communicate Statelessly
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REST (Academic Version)

1 Identifiable resources

2 Hypermedia as the engine of application state

3 Uniform interface

4 Resource representations

5 Stateless communication
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Some HTTP features
Verbs (in order of popularity):

‣ GET, POST

‣ PUT, DELETE

‣ HEAD, OPTIONS, TRACE

Standardized (& meaningful) response codes

Content negotiation

Redirection

Caching (incl. validation/expiry)

Compression

Chunking
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Web Services
A separate interface 
(façade) for each purpose

As known CORBA, 
DCOM, RMI/EJB

Often used for SOA 
(“CORBA w/ angle 
brackets)

Application-specific 
protocol

+ getOrders()

+ submitOrder()

+ getOrderDetails()

+ getOrdersForCustomers()

+ updateOrder()

+ addOrderItem()

+ cancelOrder()

+ cancelAllOrders()

OrderManagementService

+ getCustomers()

+ addCustomer()

+ getCustomerDetails()

+ updateCustomer()

+ deleteCustomer()

+ deleteAllCustomers()

CustomerManagementService

15
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Contribution to the Net’s Value

2 URLs

‣ http://example.com/customerservice
‣ http://example.com/orderservice

1 method

‣ POST

16
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Web Services Issues

Web Services are “Web” in name only

WS-* tends to ignore the web

Abstractions leak, anyway

Protocol independence is a bug, not a 
feature

17
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Designing a RESTful application

Identify resources & design URIs

Select formats (or create new ones)

Identify method semantics

Select response codes

See: http://bitworking.org/news/How_to_create_a_REST_Protocol
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REST Approach
A single generic (uniform) 
interface for everything

Generic verbs mapped to 
resource semantics

A standard application 
protocol (e.g. HTTP)

GET - get order details

PUT - update order

POST - add item

DELETE - cancel order

/orders/{id}

GET - list all orders

PUT - unused

POST - add a new order

DELETE -  cancel all orders

/orders

GET - get customer details

PUT - update customer

POST - unused

DELETE - delete customer

/customers/{id}

GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

GET

PUT

POST

DELETE

«interface»

Resource

GET - get all orders for customer

PUT - unused

POST - add order

DELETE - cancel all customer orders

/customers/{id}/orders
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Millions of URLs

‣ every customer
‣ every order

4-7 supported methods per resource

‣ GET, PUT, POST, DELETE
‣ TRACE, OPTIONS, HEAD

Cacheable, addressable, linkable, ...

Contribution to the Net’s Value
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RESTful HTTP Advantages

Universal support (programming languages, 
operating systems, servers, ...)

Proven scalability

“Real” web integration for machine-2-machine 
communication

Support for XML, but also other formats

21



Copyright (c) 2007 innoQ

Why You Should Care

22
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WS-* Roots

The Enterprise

RPC, COM, CORBA, RMI, EJB

Transaction Systems

Controlled Environment

Top-down Approach

23
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REST Roots

The Internet

Text formats

Wire Standards

FTP, POP, SMTP

Bottom-up Approach
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Internet vs. Enterprise

25
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What’s the difference 
between the Internet and a 

typical enterprise?

26



Copyright (c) 2007 innoQ

Internet vs. Enterprise
One is a gigantic, uncontrollable anarchy of 
heterogeneous systems with varying quality 
that evolve independently and constantly get 
connected in new and unexpected ways. 

27
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Internet vs. Enterprise

The other is a worldwide, publicly accessible 
series of interconnected computer networks 
that transmit data by packet switching using 
the standard Internet Protocol (IP).

One is a gigantic, uncontrollable anarchy of 
heterogeneous systems with varying quality 
that evolve independently and constantly get 
connected in new and unexpected ways. 
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If web services are 
supposed to work on 

Internet scale, they should 
be inspired by the Web, not 

by Distributed Objects
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Quotes

29
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Frankly, if I were an enterprise architect today, and I 
were genuinely concerned about development 
costs, agility, and extensibility, I’d be looking to solve 
everything I possibly could with dynamic languages 
and REST, and specifically the HTTP variety of 
REST. I’d avoid ESBs and the typical enterprise 
middleware frameworks unless I had a problem 
that really required them [...]. I’d also try to 
totally avoid SOAP and WS-*.

Steve Vinoski, formerly IONA
http://steve.vinoski.net/blog/2007/10/04/the-esb-question/
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If you’re ready for REST I suggest you jump on 
board right away and get ahead of the curve […] 
You’ll have to train your developers in REST 
principles. [...] You definitely need to provide 
guidance to your people. What you want to do is 
work to the point where REST becomes the 
default for all your distributed applications.

Anne Thomas Manes, Burton Group
http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_gci1256796,00.html
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“Want to be cool? Learn REST. 
Want a career? Learn WS.”

Steve Jones, Cap Gemini
http://service-architecture.blogspot.com/2006/11/want-to-be-cool-learn-rest-want-career.html
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JSR 311:
JAX-RS: The Java™ API

for RESTful Web Services

33
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Goals

Create a Java API for building applications 
that are on the Web easily

Follow REST principles and best practices

Format-independent (not only XML)

HTTP-centric (no protocol independence)

Container-independent
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Status

Feb 2007 Initiated, Expert Group formed

Oct 2007 Early Draft Review (end: Nov 23, 2007)

Feb 2007  Expert group formed

Jun 2007 First expert draft

Aug 2007 Early Draft review

Nov 2007  Public Review

Jan 2008   Proposed final draft

Mar 2008     Final release.       

Current status:

Original schedule:
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Spec and RI

Specification available at
http://jcp.org/aboutJava/communityprocess/edr/jsr311/index.html

Jersey (reference implementation from Sun), 
currently at V0.4
https://jersey.dev.java.net
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Approach
One class per resource “type”

Methods to handle HTTP requests

Use of Java 5 Annotations to specify

‣ URI Mapping
‣ Mapping to HTTP methods
‣ Mapping of URI components, HTTP headers, 

HTTP entities to method parameters and 
return types

‣ MIME type information
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GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

Example

public class CustomersResource { 

} 

    public String getAsPlainText() { 
        return toString() +  "\n\n"; 
    }

38
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GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

Example

public class CustomersResource { 

} 

@UriTemplate("/customers/") 

    public String getAsPlainText() { 
        return toString() +  "\n\n"; 
    }
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GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

Example

public class CustomersResource { 

} 

@UriTemplate("/customers/") 

    public String getAsPlainText() { 
        return toString() +  "\n\n"; 
    }

@ProduceMime("text/plain")
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GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

Example

public class CustomersResource { 

} 

@UriTemplate("/customers/") 

    public String getAsPlainText() { 
        return toString() +  "\n\n"; 
    }

@HttpMethod("GET") 
@ProduceMime("text/plain")
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GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

Example

public class CustomersResource { 

} 

@UriTemplate("/customers/") 

    public String getAsPlainText() { 
        return toString() +  "\n\n"; 
    }

@HttpMethod("GET") 
@ProduceMime("text/plain")

import javax.ws.rs.ProduceMime; 
import javax.ws.rs.UriTemplate; 
import javax.ws.rs.HttpMethod; 
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@UriTemplate
URI Templates define URI strings with 
embedded variables

http://example.org/products/{upc}/buyers?page={page_num}

Based on Joe Gregorio’s URI Templates 
IETF Draft (see http://bitworking.org/projects/URI-Templates/) 

@UriTemplate annotation can be applied 
to classes or methods
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@UriTemplate

@UriTemplate on a class “anchor” a 
class into URI space, relative to a base 
URI

Method-specific @UriTemplate is 
relative to the class URI

@UriParam, @QueryParam, 
@MatrixParam to access URI templates 
variables
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@HttpMethod

@HttpMethod specifies the HTTP “verb” 
a method handles (GET, PUT, POST, 
DELETE, ...)

If not specified, verb default according to 
start of method name

HEAD and OPTIONS handled by 
implementation (unless overridden)
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Example
@UriTemplate("/helloworld/{section}") 
public class HelloWorldResource { 
 
    @HttpMethod("GET") 
    @UriTemplate("/{id}") 
    public String findBySectionAndId( 
        @UriParam("section") String section, 
        @UriParam("id") int id) { 
        return "Hello World - section is " + section 
               + ", id is " + id + "\n"; 
    } 
}
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Example
@UriTemplate("/helloworld/{section}") 
public class HelloWorldResource { 
 
    @HttpMethod("GET") 
    @UriTemplate("/{id}") 
    public String findBySectionAndId( 
        @UriParam("section") String section, 
        @UriParam("id") int id) { 
        return "Hello World - section is " + section 
               + ", id is " + id + "\n"; 
    } 
}

http://localhost:9998/helloworld/main/23
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Example
@UriTemplate("/helloworld/{section}") 
public class HelloWorldResource { 
 
    @HttpMethod("GET") 
    @UriTemplate("/{id}") 
    public String findBySectionAndId( 
        @UriParam("section") String section, 
        @UriParam("id") int id) { 
        return "Hello World - section is " + section 
               + ", id is " + id + "\n"; 
    } 
}

http://localhost:9998/helloworld/main/23

Hello World - section is main, id is 23

42
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Content Negotiation:
@ConsumeMime, @ProduceMime

@ConsumeMime and @ProduceMime 
specify accepted and delivered MIME 
types

Can be specified on class and method 
level (method level overrides) 

Special treatment for EntityProvider 
classes
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Request dispatching
1.Find class and method according to
‣ Actual URI and @UriTemplate

‣ HTTP method and @HttpMethod

‣ “Content-type:” header and @ConsumeMime

‣ “Accept:” header and @ProduceMime

2.Map @UriParam, @QueryParam, 
@MatrixParam parameters from URI

3.Map body (for POST and PUT) to un-
annotated parameter

4.Invoke method
5.Map return value (if any)
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Example
@UriTemplate("customers/") 
public class CustomersResource { 
 
    @HttpMethod("GET") @ProduceMime("text/plain") 
    public String getAsPlainText() { 
        return toString() +  "\n\n"; 
    } 
 
    @HttpMethod("GET") @ProduceMime("application/vnd.innoq.customers+xml") 
    public String getAsXml() { 
        List<Customer> customers = Customer.findAll(); 
        // ...
        return elementToXmlString(root); 
    } 
 
    @HttpMethod("POST") @ConsumeMime("application/vnd.innoq.customer+xml") 
    public Response newCustomer(String body) { 
        // ...
    }

    @HttpMethod("DELETE") 
    public Response delete(@UriParam("id") int id) { 
        // ...
    } 
}  
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EntityProvider

Converts between Java types and 
representations

Class marked with @Provider, 
implements EntityProvider<T>

Provides methods for conversion 
InputStream/OutputStream to/from Java 
object of type T
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Example
@Provider 
@ProduceMime({"application/vnd.innoq.customer+xml", "text/plain"}) 
@ConsumeMime("application/vnd.innoq.customer+xml") 
public class CustomerEntityProvider implements EntityProvider<Customer> { 
    public boolean supports(Class<?> type) { 
        return Customer.class.isAssignableFrom(type); 
    } 
 
    public Customer readFrom(Class<Customer> type, MediaType mediaType, 
                             MultivaluedMap<String, String> httpHeaders, 
                             InputStream entityStream) throws IOException { 
        Customer customer = ... 
        return customer; 
    } 
 
    public void writeTo(Customer customer, MediaType mediaType, 
                        MultivaluedMap<String, Object> httpHeaders, 
                        OutputStream entityStream) throws IOException { 
            OutputStreamWriter osw = new OutputStreamWriter(entityStream); 
            osw.write(...); 
            osw.close(); 
        } 
    } 
 
} 
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Sub Resource support

Methods annotated with @UriTemplate  
but without @HttMethod allow for 
hierarchical resources

Typical use: Collection resources
    @UriTemplate("{id}") 
    public CustomerResource customerById(@UriParam("id") int id) { 
        return new CustomerResource(Customer.get(id)); 
    }

48
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GET - get order details

PUT - update order

POST - add item

DELETE - cancel order

/orders/{id}

GET - list all orders

PUT - unused

POST - add a new order

DELETE -  cancel all orders

/orders

GET - get customer details

PUT - update customer

POST - unused

DELETE - delete customer

/customers/{id}

GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

GET - get all orders for customer

PUT - unused

POST - add order

DELETE - cancel all customer orders

/customers/{id}/orders

"Root" resource collections

Sub resources

Nested resource collection

Resource hierarchy
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Response.Builder

Enables creation of objects with additional 
HTTP metadata

Builder pattern

return Response.Builder
        .representation("Not found\n",
                        "text/plain")
        .status(404).build();
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UriBuilder

Enables creation of URIs without repeating 
URI template content

Used to support hypermedia - i.e., create 
links

Builder pattern, again:
URI uri = UriBuilder
           .fromUri(BASEURI)
           .path(CustomersResource.class)
           .path(id).build();
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@HttpContext

@HttpContext to access 

‣ URI Info (Class UriInfo)

‣ HTTP Headers (Class HeaderParam)

‣ Preconditions (Class HttpHeaders)
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Environments

Deployment to multiple different 
environments:

‣ Embedded HTTP Server (Java 6)
‣ Servlets
‣ Java EE
‣ JAX-WS
‣ Others (e.g. Restlet, ...)
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Demo

54
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Under Discussion

Refactoring of @HttpMethod:
@GET @Path("/customers/{id}")

JAX-RS Client API

“Platonic URIs”
(.xml, .json, ... instead of content negotiation)

...
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What you can do

Read the spec!

Download and play with Jersey!

Provide feedback!

56



Copyright (c) 2007 innoQ

Stefan Tilkov

Architectural Consulting

SOA

MDA MDSD

WS-* REST

MDE

J(2)EE RoR .NET
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Thank you!
Any questions?
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