
JAX-RS:
REST, the Java Way

Stefan Tilkov, stefan.tilkov@innoq.com

1

mailto:stefan.tilkov@innoq.com
mailto:stefan.tilkov@innoq.com

Copyright (c) 2007 innoQ

Contents

An Introduction to REST

Why REST Matters

JSR 311 Overview

Demo

What’s Next

2

Copyright (c) 2007 innoQ

Stefan Tilkov

stefan.tilkov@innoq.com

http://www.innoq.com/blog/st/

3

mailto:stefan.tilkov@innoq.com
mailto:stefan.tilkov@innoq.com
http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/

Copyright (c) 2007 innoQ

Stefan Tilkov

http://www.innoQ.com

stefan.tilkov@innoq.com

http://www.innoq.com/blog/st/

3

http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/
mailto:stefan.tilkov@innoq.com
mailto:stefan.tilkov@innoq.com
http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/

Copyright (c) 2007 innoQ

Stefan Tilkov

http://www.innoQ.com

http://www.InfoQ.com

stefan.tilkov@innoq.com

http://www.innoq.com/blog/st/

3

http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/
mailto:stefan.tilkov@innoq.com
mailto:stefan.tilkov@innoq.com
http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/

Copyright (c) 2007 innoQ

What is REST?

REpresentational State Transfer

Described by Roy Fielding in his
dissertation

One of a number of “architectural styles”

Architectural principles underlying HTTP,
defined a posteriori

See: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

4

Copyright (c) 2007 innoQ

REST Explained
in 5 Easy Steps

5

Copyright (c) 2007 innoQ

0. Prerequisite:
Let’s equate “REST” with
“RESTful HTTP usage” ...

6

Copyright (c) 2007 innoQ

1. Give Every “Thing” an ID

http://example.com/customers/1234

http://example.com/orders/2007/10/776654

http://example.com/products/4554

http://example.com/processes/sal-increase-234

7

http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/orders/2007/10/776654
http://example.com/orders/2007/10/776654
http://example.com/products/4554
http://example.com/products/4554
http://example.com/processes/sal-increase-234
http://example.com/processes/sal-increase-234

Copyright (c) 2007 innoQ

2. Link Things To Each Other

<order self=’http://example.com/customers/1234’>
 <amount>23</amount>
 <product ref=’http://example.com/products/4554’ />
 <customer ref=’http://example.com/customers/1234’ />
</order>

8

http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234

Copyright (c) 2007 innoQ

3. Use Standard Methods

GET retrieve information, possibly cached

PUT Update or create with known ID

POST Create or append sub-resource

DELETE (Logically) remove

9

Copyright (c) 2007 innoQ

4. Allow for Multiple
 “Representations”

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

10

Copyright (c) 2007 innoQ

4. Allow for Multiple
 “Representations”

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

<customer>...</customer>

10

Copyright (c) 2007 innoQ

4. Allow for Multiple
 “Representations”

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

GET /customers/1234
Host: example.com
Accept: text/x-vcard

<customer>...</customer>

10

Copyright (c) 2007 innoQ

4. Allow for Multiple
 “Representations”

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

GET /customers/1234
Host: example.com
Accept: text/x-vcard

<customer>...</customer>

begin:vcard
...
end:vcard

10

Copyright (c) 2007 innoQ

5. Communicate Statelessly
GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

time

<customer><order ref=’./orders/46’</customer>

11

Copyright (c) 2007 innoQ

5. Communicate Statelessly
GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

time

<customer><order ref=’./orders/46’</customer>

shutdown
update software
replace hardware
startup

11

Copyright (c) 2007 innoQ

5. Communicate Statelessly
GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

time

<customer><order ref=’./orders/46’</customer>

GET /customers/1234/orders/46
Host: example.com
Accept: application/vnd.mycompany.order+xml

<order>...</order>

shutdown
update software
replace hardware
startup

11

Copyright (c) 2007 innoQ

REST (Pragmatic Version)

1 Give everything an ID

2 Link things to each other

3 Use standard methods

4 Allow for multiple representations

5 Communicate Statelessly

12

Copyright (c) 2007 innoQ

REST (Academic Version)

1 Identifiable resources

2 Hypermedia as the engine of application state

3 Uniform interface

4 Resource representations

5 Stateless communication

13

Copyright (c) 2007 innoQ

Some HTTP features
Verbs (in order of popularity):

‣ GET, POST

‣ PUT, DELETE

‣ HEAD, OPTIONS, TRACE

Standardized (& meaningful) response codes

Content negotiation

Redirection

Caching (incl. validation/expiry)

Compression

Chunking

14

Copyright (c) 2007 innoQ

Web Services
A separate interface
(façade) for each purpose

As known CORBA,
DCOM, RMI/EJB

Often used for SOA
(“CORBA w/ angle
brackets)

Application-specific
protocol

+ getOrders()

+ submitOrder()

+ getOrderDetails()

+ getOrdersForCustomers()

+ updateOrder()

+ addOrderItem()

+ cancelOrder()

+ cancelAllOrders()

OrderManagementService

+ getCustomers()

+ addCustomer()

+ getCustomerDetails()

+ updateCustomer()

+ deleteCustomer()

+ deleteAllCustomers()

CustomerManagementService

15

Copyright (c) 2007 innoQ

Contribution to the Net’s Value

2 URLs

‣ http://example.com/customerservice
‣ http://example.com/orderservice

1 method

‣ POST

16

Copyright (c) 2007 innoQ

Web Services Issues

Web Services are “Web” in name only

WS-* tends to ignore the web

Abstractions leak, anyway

Protocol independence is a bug, not a
feature

17

Copyright (c) 2007 innoQ

Designing a RESTful application

Identify resources & design URIs

Select formats (or create new ones)

Identify method semantics

Select response codes

See: http://bitworking.org/news/How_to_create_a_REST_Protocol

18

http://bitworking.org/news/How_to_create_a_REST_Protocol
http://bitworking.org/news/How_to_create_a_REST_Protocol

Copyright (c) 2007 innoQ

REST Approach
A single generic (uniform)
interface for everything

Generic verbs mapped to
resource semantics

A standard application
protocol (e.g. HTTP)

GET - get order details

PUT - update order

POST - add item

DELETE - cancel order

/orders/{id}

GET - list all orders

PUT - unused

POST - add a new order

DELETE - cancel all orders

/orders

GET - get customer details

PUT - update customer

POST - unused

DELETE - delete customer

/customers/{id}

GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

GET

PUT

POST

DELETE

«interface»

Resource

GET - get all orders for customer

PUT - unused

POST - add order

DELETE - cancel all customer orders

/customers/{id}/orders

19

Copyright (c) 2007 innoQ

Millions of URLs

‣ every customer
‣ every order

4-7 supported methods per resource

‣ GET, PUT, POST, DELETE
‣ TRACE, OPTIONS, HEAD

Cacheable, addressable, linkable, ...

Contribution to the Net’s Value

20

Copyright (c) 2007 innoQ

RESTful HTTP Advantages

Universal support (programming languages,
operating systems, servers, ...)

Proven scalability

“Real” web integration for machine-2-machine
communication

Support for XML, but also other formats

21

Copyright (c) 2007 innoQ

Why You Should Care

22

Copyright (c) 2007 innoQ

WS-* Roots

The Enterprise

RPC, COM, CORBA, RMI, EJB

Transaction Systems

Controlled Environment

Top-down Approach

23

Copyright (c) 2007 innoQ

REST Roots

The Internet

Text formats

Wire Standards

FTP, POP, SMTP

Bottom-up Approach

24

Copyright (c) 2007 innoQ

25

Copyright (c) 2007 innoQ

Internet vs. Enterprise

25

Copyright (c) 2007 innoQ

What’s the difference
between the Internet and a

typical enterprise?

26

Copyright (c) 2007 innoQ

Internet vs. Enterprise
One is a gigantic, uncontrollable anarchy of
heterogeneous systems with varying quality
that evolve independently and constantly get
connected in new and unexpected ways.

27

Copyright (c) 2007 innoQ

Internet vs. Enterprise

The other is a worldwide, publicly accessible
series of interconnected computer networks
that transmit data by packet switching using
the standard Internet Protocol (IP).

One is a gigantic, uncontrollable anarchy of
heterogeneous systems with varying quality
that evolve independently and constantly get
connected in new and unexpected ways.

27

Copyright (c) 2007 innoQ

If web services are
supposed to work on

Internet scale, they should
be inspired by the Web, not

by Distributed Objects

28

Copyright (c) 2007 innoQ

Quotes

29

Copyright (c) 2007 innoQ

Frankly, if I were an enterprise architect today, and I
were genuinely concerned about development
costs, agility, and extensibility, I’d be looking to solve
everything I possibly could with dynamic languages
and REST, and specifically the HTTP variety of
REST. I’d avoid ESBs and the typical enterprise
middleware frameworks unless I had a problem
that really required them [...]. I’d also try to
totally avoid SOAP and WS-*.

Steve Vinoski, formerly IONA
http://steve.vinoski.net/blog/2007/10/04/the-esb-question/

30

http://steve.vinoski.net/blog/2007/10/04/the-esb-question/
http://steve.vinoski.net/blog/2007/10/04/the-esb-question/

Copyright (c) 2007 innoQ

If you’re ready for REST I suggest you jump on
board right away and get ahead of the curve […]
You’ll have to train your developers in REST
principles. [...] You definitely need to provide
guidance to your people. What you want to do is
work to the point where REST becomes the
default for all your distributed applications.

Anne Thomas Manes, Burton Group
http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_gci1256796,00.html

31

http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_gci1256796,00.html
http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_gci1256796,00.html

Copyright (c) 2007 innoQ

“Want to be cool? Learn REST.
Want a career? Learn WS.”

Steve Jones, Cap Gemini
http://service-architecture.blogspot.com/2006/11/want-to-be-cool-learn-rest-want-career.html

32

http://www.tbray.org/ongoing/When/200x/2004/09/18/WS-Oppo
http://www.tbray.org/ongoing/When/200x/2004/09/18/WS-Oppo

Copyright (c) 2007 innoQ

JSR 311:
JAX-RS: The Java™ API

for RESTful Web Services

33

Copyright (c) 2007 innoQ

Goals

Create a Java API for building applications
that are on the Web easily

Follow REST principles and best practices

Format-independent (not only XML)

HTTP-centric (no protocol independence)

Container-independent

34

Copyright (c) 2007 innoQ

Status

Feb 2007 Initiated, Expert Group formed

Oct 2007 Early Draft Review (end: Nov 23, 2007)

Feb 2007 Expert group formed

Jun 2007 First expert draft

Aug 2007 Early Draft review

Nov 2007 Public Review

Jan 2008 Proposed final draft

Mar 2008 Final release.

Current status:

Original schedule:

35

Copyright (c) 2007 innoQ

Spec and RI

Specification available at
http://jcp.org/aboutJava/communityprocess/edr/jsr311/index.html

Jersey (reference implementation from Sun),
currently at V0.4
https://jersey.dev.java.net

36

http://jcp.org/aboutJava/communityprocess/edr/jsr311/index.html
http://jcp.org/aboutJava/communityprocess/edr/jsr311/index.html
http://jcp.org/aboutJava/communityprocess/edr/jsr311/index.html
http://jcp.org/aboutJava/communityprocess/edr/jsr311/index.html
http://jcp.org/aboutJava/communityprocess/edr/jsr311/index.html
http://jcp.org/aboutJava/communityprocess/edr/jsr311/index.html

Copyright (c) 2007 innoQ

Approach
One class per resource “type”

Methods to handle HTTP requests

Use of Java 5 Annotations to specify

‣ URI Mapping
‣ Mapping to HTTP methods
‣ Mapping of URI components, HTTP headers,

HTTP entities to method parameters and
return types

‣ MIME type information

37

Copyright (c) 2007 innoQ

GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

Example

public class CustomersResource {

}

 public String getAsPlainText() {
 return toString() + "\n\n";
 }

38

Copyright (c) 2007 innoQ

GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

Example

public class CustomersResource {

}

@UriTemplate("/customers/")

 public String getAsPlainText() {
 return toString() + "\n\n";
 }

38

Copyright (c) 2007 innoQ

GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

Example

public class CustomersResource {

}

@UriTemplate("/customers/")

 public String getAsPlainText() {
 return toString() + "\n\n";
 }

@ProduceMime("text/plain")

38

Copyright (c) 2007 innoQ

GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

Example

public class CustomersResource {

}

@UriTemplate("/customers/")

 public String getAsPlainText() {
 return toString() + "\n\n";
 }

@HttpMethod("GET")
@ProduceMime("text/plain")

38

Copyright (c) 2007 innoQ

GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

Example

public class CustomersResource {

}

@UriTemplate("/customers/")

 public String getAsPlainText() {
 return toString() + "\n\n";
 }

@HttpMethod("GET")
@ProduceMime("text/plain")

import javax.ws.rs.ProduceMime;
import javax.ws.rs.UriTemplate;
import javax.ws.rs.HttpMethod;

38

Copyright (c) 2007 innoQ

@UriTemplate
URI Templates define URI strings with
embedded variables

http://example.org/products/{upc}/buyers?page={page_num}

Based on Joe Gregorio’s URI Templates
IETF Draft (see http://bitworking.org/projects/URI-Templates/)

@UriTemplate annotation can be applied
to classes or methods

39

http://livepage.apple.com/
http://livepage.apple.com/
http://bitworking.org/projects/URI-Templates/
http://bitworking.org/projects/URI-Templates/

Copyright (c) 2007 innoQ

@UriTemplate

@UriTemplate on a class “anchor” a
class into URI space, relative to a base
URI

Method-specific @UriTemplate is
relative to the class URI

@UriParam, @QueryParam,
@MatrixParam to access URI templates
variables

40

Copyright (c) 2007 innoQ

@HttpMethod

@HttpMethod specifies the HTTP “verb”
a method handles (GET, PUT, POST,
DELETE, ...)

If not specified, verb default according to
start of method name

HEAD and OPTIONS handled by
implementation (unless overridden)

41

Copyright (c) 2007 innoQ

Example
@UriTemplate("/helloworld/{section}")
public class HelloWorldResource {

 @HttpMethod("GET")
 @UriTemplate("/{id}")
 public String findBySectionAndId(
 @UriParam("section") String section,
 @UriParam("id") int id) {
 return "Hello World - section is " + section
 + ", id is " + id + "\n";
 }
}

42

Copyright (c) 2007 innoQ

Example
@UriTemplate("/helloworld/{section}")
public class HelloWorldResource {

 @HttpMethod("GET")
 @UriTemplate("/{id}")
 public String findBySectionAndId(
 @UriParam("section") String section,
 @UriParam("id") int id) {
 return "Hello World - section is " + section
 + ", id is " + id + "\n";
 }
}

http://localhost:9998/helloworld/main/23

42

http://livepage.apple.com/
http://livepage.apple.com/

Copyright (c) 2007 innoQ

Example
@UriTemplate("/helloworld/{section}")
public class HelloWorldResource {

 @HttpMethod("GET")
 @UriTemplate("/{id}")
 public String findBySectionAndId(
 @UriParam("section") String section,
 @UriParam("id") int id) {
 return "Hello World - section is " + section
 + ", id is " + id + "\n";
 }
}

http://localhost:9998/helloworld/main/23

Hello World - section is main, id is 23

42

http://livepage.apple.com/
http://livepage.apple.com/

Copyright (c) 2007 innoQ

Content Negotiation:
@ConsumeMime, @ProduceMime

@ConsumeMime and @ProduceMime
specify accepted and delivered MIME
types

Can be specified on class and method
level (method level overrides)

Special treatment for EntityProvider
classes

43

Copyright (c) 2007 innoQ

Request dispatching
1.Find class and method according to
‣ Actual URI and @UriTemplate

‣ HTTP method and @HttpMethod

‣ “Content-type:” header and @ConsumeMime

‣ “Accept:” header and @ProduceMime

2.Map @UriParam, @QueryParam,
@MatrixParam parameters from URI

3.Map body (for POST and PUT) to un-
annotated parameter

4.Invoke method
5.Map return value (if any)

44

Copyright (c) 2007 innoQ

Example
@UriTemplate("customers/")
public class CustomersResource {

 @HttpMethod("GET") @ProduceMime("text/plain")
 public String getAsPlainText() {
 return toString() + "\n\n";
 }

 @HttpMethod("GET") @ProduceMime("application/vnd.innoq.customers+xml")
 public String getAsXml() {
 List<Customer> customers = Customer.findAll();
 // ...
 return elementToXmlString(root);
 }

 @HttpMethod("POST") @ConsumeMime("application/vnd.innoq.customer+xml")
 public Response newCustomer(String body) {
 // ...
 }

 @HttpMethod("DELETE")
 public Response delete(@UriParam("id") int id) {
 // ...
 }
}

45

Copyright (c) 2007 innoQ

EntityProvider

Converts between Java types and
representations

Class marked with @Provider,
implements EntityProvider<T>

Provides methods for conversion
InputStream/OutputStream to/from Java
object of type T

46

Copyright (c) 2007 innoQ

Example
@Provider
@ProduceMime({"application/vnd.innoq.customer+xml", "text/plain"})
@ConsumeMime("application/vnd.innoq.customer+xml")
public class CustomerEntityProvider implements EntityProvider<Customer> {
 public boolean supports(Class<?> type) {
 return Customer.class.isAssignableFrom(type);
 }

 public Customer readFrom(Class<Customer> type, MediaType mediaType,
 MultivaluedMap<String, String> httpHeaders,
 InputStream entityStream) throws IOException {
 Customer customer = ...
 return customer;
 }

 public void writeTo(Customer customer, MediaType mediaType,
 MultivaluedMap<String, Object> httpHeaders,
 OutputStream entityStream) throws IOException {
 OutputStreamWriter osw = new OutputStreamWriter(entityStream);
 osw.write(...);
 osw.close();
 }
 }

}

47

Copyright (c) 2007 innoQ

Sub Resource support

Methods annotated with @UriTemplate
but without @HttMethod allow for
hierarchical resources

Typical use: Collection resources
 @UriTemplate("{id}")
 public CustomerResource customerById(@UriParam("id") int id) {
 return new CustomerResource(Customer.get(id));
 }

48

Copyright (c) 2007 innoQ

GET - get order details

PUT - update order

POST - add item

DELETE - cancel order

/orders/{id}

GET - list all orders

PUT - unused

POST - add a new order

DELETE - cancel all orders

/orders

GET - get customer details

PUT - update customer

POST - unused

DELETE - delete customer

/customers/{id}

GET - list all customers

PUT - unused

POST - add new customer

DELETE - delete all customers

/customers

GET - get all orders for customer

PUT - unused

POST - add order

DELETE - cancel all customer orders

/customers/{id}/orders

"Root" resource collections

Sub resources

Nested resource collection

Resource hierarchy

49

Copyright (c) 2007 innoQ

Response.Builder

Enables creation of objects with additional
HTTP metadata

Builder pattern

return Response.Builder
 .representation("Not found\n",
 "text/plain")
 .status(404).build();

50

Copyright (c) 2007 innoQ

UriBuilder

Enables creation of URIs without repeating
URI template content

Used to support hypermedia - i.e., create
links

Builder pattern, again:
URI uri = UriBuilder
 .fromUri(BASEURI)
 .path(CustomersResource.class)
 .path(id).build();

51

Copyright (c) 2007 innoQ

@HttpContext

@HttpContext to access

‣ URI Info (Class UriInfo)

‣ HTTP Headers (Class HeaderParam)

‣ Preconditions (Class HttpHeaders)

52

Copyright (c) 2007 innoQ

Environments

Deployment to multiple different
environments:

‣ Embedded HTTP Server (Java 6)
‣ Servlets
‣ Java EE
‣ JAX-WS
‣ Others (e.g. Restlet, ...)

53

Copyright (c) 2007 innoQ

Demo

54

Copyright (c) 2007 innoQ

Under Discussion

Refactoring of @HttpMethod:
@GET @Path("/customers/{id}")

JAX-RS Client API

“Platonic URIs”
(.xml, .json, ... instead of content negotiation)

...

55

Copyright (c) 2007 innoQ

What you can do

Read the spec!

Download and play with Jersey!

Provide feedback!

56

Copyright (c) 2007 innoQ

Stefan Tilkov

Architectural Consulting

SOA

MDA MDSD

WS-* REST

MDE

J(2)EE RoR .NET

http://www.innoq.com/blog/st/

http://www.innoq.com

Thank you!
Any questions?

57

http://www.innoq.com/blog/st
http://www.innoq.com/blog/st
http://www.innoq.com/blog/st
http://www.innoq.com/blog/st

Copyright (c) 2007 innoQ

Stefan Tilkov

Architectural Consulting

SOA

MDA MDSD

WS-* REST

MDE

J(2)EE RoR .NET

http://www.innoq.com/blog/st/

http://www.innoq.com

Thank you!
Any questions?

Slides online

57

http://www.innoq.com/blog/st
http://www.innoq.com/blog/st
http://www.innoq.com/blog/st
http://www.innoq.com/blog/st

