
ENTERPRISE SOA CONFERENCE
2 4 O c t o b e r 2 0 0 6 , D e M o n t i l , A f f l i g e m

BELGIAN JAVA USER GROUP PRESENTS

www.bejug.org

REST - the Better Web
Services Model

Stefan Tilkov
Founder & Principal
Consultant
innoQ Deutschland GmbH

www.bejug.org

Overall presentation goal

Understand the value of REST and its use for
building scalable systems

www.bejug.org

Speaker’s Qualifications

 Architecting mission-critical systems since
1995

 Background with C/DCE, C++/CORBA,
Java/J2EE

 SOA Community editor at InfoQ
(www.infoq.com)

 Numerous articles and presentations on
SOA, Web services, and architecture

See: http://www.innoq.com/blog/st/

www.bejug.org

REST as an Alternative to Web Services

If your goal is to create a loosely-coupled,
evolvable, distributed system architecture
based on standards and accessible to as
many people as possible, you might think

Web services are the best option.

www.bejug.org

REST as an Alternative to Web Services

If your goal is to create a loosely-coupled,
evolvable, distributed system architecture
based on standards and accessible to as
many people as possible, you might think

Web services are the best option.

You would be wrong.

www.bejug.org

Agenda

 Introducing REST
 REST vs. Web services
 Advanced use cases
 Summary

www.bejug.org

Agenda

 Introducing REST
 REST vs. Web services
 Advanced use cases
 Summary

www.bejug.org

What is REST?

 REpresentational State Transfer
 Described by Roy Fielding in his dissertation
 One of a number of “architectural styles”
 Architectural principles underlying HTTP,

defined a posteriori

See: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

www.bejug.org

REST and HTTP

 REST is an abstraction that could be
implemented with any technology

 Best-known implementation of REST is
HTTP

 Bear this in mind when HTTP is used to
illustrate REST in the rest of this talk

http://savas.parastatidis.name/2005/03/12/505b74f7-d5d3-4b94-95d4-65129ce2bf2b.aspx

www.bejug.org

REST Key Principles

 Identifiable resources
 Uniform interface
 Stateless communication
 Resource representations
 Hypermedia

www.bejug.org

Identifiable resources

 A resource represents a real or virtual entity
- a customer, vehicle fleet, shopping cart ...

 On the Web, resources are identified by
URIs

 Each URI adds value to the Net as a whole
 Imagine Amazom.com without URIs!

www.bejug.org

Uniform interface

 Once you a know a resource’s ID, you can
interact with it using a single standard
interface

 Limited set of operations (verbs) in HTTP:
GET, PUT, POST, DELETE (+ some more)

 Pre-defined semantics allow for optimization
(e.g. caching)

www.bejug.org

Resource representations

 Resources are always accessed through a
representation

 There can be more than one
 e.g. HTML, PDF, XML

 HTTP provides content types and content
negotiation

 If possible, resources should be represented
using well-known (ideally: standardized)
content types

www.bejug.org

Stateless communication

 A server does not need to maintain state for
each client

 Massive advantages in terms of scalability
 Enforces loose coupling (no shared session

knowledge)

www.bejug.org

Hypermedia

 Possible (client) state transitions are made
explicit through links

 Enable following of part-whole, detail,
belongs-to and arbitrary other connections

 Links are (ideally) always provided by the
server, not created by the client

 Enables seamless evolution and distribution

www.bejug.org

REST Approach

 A single generic
(uniform) interface for
everything

 Generic verbs mapped
to resource semantics

 A standard application
protocol (e.g. HTTP)

www.bejug.org

Contribution to the Net’s Value

 1 URL for each resource - possibly millions
 every customer
 every order

 4-7 supported methods per resource
 GET, PUT, POST, DELETE
 TRACE, OPTIONS, HEAD

 Cacheable, addressable, linkable, ...

www.bejug.org

Designing a RESTful application

 Identify resources & design URIs
 Select formats (or create new ones)
 Identify method semantics
 Select response codes

See: http://bitworking.org/news/How_to_create_a_REST_Protocol

www.bejug.org

RESTful HTTP Advantages

 Universal support (programming languages,
operating systems, servers, ...)

 Proven scalability
 Support for redirect, caching, different

representations, resource identification, ...
 “Real” web integration for machine-2-machine

communication
 Support for XML, but also other formats

www.bejug.org

Agenda

 Introducing REST
 REST vs. Web services
 Advanced use cases
 Summary

www.bejug.org

Distributed Objects Approach

 A separate interface
(façade) for each
purpose

 As known CORBA,
DCOM, RMI/EJB

 Often used for SOA
(“CORBA w/ angle
brackets)

 Application-specific
protocol

www.bejug.org

Web Services and the Web

 WSDL/SOAP-based Web services are
“protocol independent”

 Examples:
 Microsoft supports SOAP over TCP
 Many Java implementations allow for SOAP

with proprietary JMS implementations
 HTTP is just one more “transport protocol”

www.bejug.org

Contribution to the Net’s Value

 2 URLs
 http://example.com/customerservice
 http://example.com/orderservice

 1 method
 POST

www.bejug.org

$ 64,000 Question:

 So how can one use HTTP’s features with
SOAP Web services?

www.bejug.org

Some HTTP features

 Verbs (in order of popularity):
 GET, POST
 PUT, DELETE
 HEAD, OPTIONS, TRACE

 Standardized (& meaningful) response codes
 Content negotiation
 Redirection
 Caching (incl. validation/expiry)
 Compression
 Chunking

www.bejug.org

$ 64,000 Answer

www.bejug.org

$ 64,000 Answer

 So how can one use HTTP’s features with
SOAP Web services?

www.bejug.org

$ 64,000 Answer

 So how can one use HTTP’s features with
SOAP Web services?
 Not at all. At least not without breaking protocol

independence.

www.bejug.org

$ 64,000 Answer

 So how can one use HTTP’s features with
SOAP Web services?
 Not at all. At least not without breaking protocol

independence.
 HTTP is not a “dumb” transport protocol, but

an application protocol

www.bejug.org

Web Services Issues

www.bejug.org

Web Services Issues

www.bejug.org

Web Services Issues

see http://www.innoq.com/soa/ws-standards/poster

www.bejug.org

Web Services Issues

www.bejug.org

Web Services Issues

www.bejug.org

Web Services Issues

See http://www.loudthinking.com/arc/000585.html

www.bejug.org

Web Services Issues

 “No matter how hard I try, I still think the
WS-* stack is bloated, opaque, and insanely
complex. I think it is going to be hard to
understand, hard to implement, hard to
interoperate, and hard to secure.”

www.bejug.org

Web Services Issues

 “No matter how hard I try, I still think the
WS-* stack is bloated, opaque, and insanely
complex. I think it is going to be hard to
understand, hard to implement, hard to
interoperate, and hard to secure.”

Tim Bray, co-inventor of XML

www.bejug.org

Web Services Issues

 “No matter how hard I try, I still think the
WS-* stack is bloated, opaque, and insanely
complex. I think it is going to be hard to
understand, hard to implement, hard to
interoperate, and hard to secure.”

http://www.tbray.org/ongoing/When/200x/2004/09/18/WS-Oppo
Tim Bray, co-inventor of XML

www.bejug.org

Web Services Issues

 “Show me the interoperable, full and free
implementations of WS-* in Python, Perl, Ruby
and PHP. You won’t see them, because there’s no
intrinsic value in WS-* unless you’re trying to
suck money out of your customers. Its complexity
serves as a barrier to entry at the same time that
it creates “value” that can be sold.”

www.bejug.org

Web Services Issues

 “Show me the interoperable, full and free
implementations of WS-* in Python, Perl, Ruby
and PHP. You won’t see them, because there’s no
intrinsic value in WS-* unless you’re trying to
suck money out of your customers. Its complexity
serves as a barrier to entry at the same time that
it creates “value” that can be sold.”

Mark Nottingham, formerly BEA,

www.bejug.org

Web Services Issues

 “Show me the interoperable, full and free
implementations of WS-* in Python, Perl, Ruby
and PHP. You won’t see them, because there’s no
intrinsic value in WS-* unless you’re trying to
suck money out of your customers. Its complexity
serves as a barrier to entry at the same time that
it creates “value” that can be sold.”

Mark Nottingham, formerly BEA,
former chair of the WS-Addressing WG

www.bejug.org

Web Services Issues

 “Show me the interoperable, full and free
implementations of WS-* in Python, Perl, Ruby
and PHP. You won’t see them, because there’s no
intrinsic value in WS-* unless you’re trying to
suck money out of your customers. Its complexity
serves as a barrier to entry at the same time that
it creates “value” that can be sold.”

http://www.mnot.net/blog/2006/05/10/vendors

Mark Nottingham, formerly BEA,
former chair of the WS-Addressing WG

www.bejug.org

Web Services Issues

 Web services and WS-* stack are supposed
to create a new ubiquitous protocol stack
 on top of another ubiquitous protocol stack

 WS-* tends to ignore the web
 Abstractions “leak”, anyway
 Protocol independence is a bug, not a

feature

www.bejug.org

Web Services Issues (contd.)

 The Web and the Internet architecture is
based on standard protocols

 Not only HTTP, but also SMTP, FTP,
DNS, ...

 If web services are supposed to work on
Internet scale, they should be inspired by
the Web, not by Distributed Objects

www.bejug.org

Agenda

 Introducing REST
 REST vs. Web services
 Advanced use cases
 Summary

www.bejug.org

Asynchronous Communication

 HTTP is always synchronous request/
response

 For lengthy interactions, the server should
return 202 Accepted and a URI for the
result

 Poll or pass a URI to be notified
 WS-Addressing is just URIs used badly

www.bejug.org

Reliable Messaging w/ HTTP

 First question: What does “reliable” mean?
 Often solved at the application level
 Existing proposals:

 Bill de hÓra’s HTTPLR
 Yaron Goland’s SOA-Reliability (“SOA-Rity”)

www.bejug.org

2-Phase-Commit Transactions

 The Holy Grail of Applied Computer Science
 In practice, not used as often as you think

“It hurts when I do that, Doctor.” – ”Then don’t do that!”
 2PC and loose coupling don’t work together very

well
 Compensating transactions are business logic

anyway
 A light-weight protocol could be created, but no

one has cared so far

www.bejug.org

Resource Access

www.bejug.org

Resource Access

 WS-Transfer
 This specification defines a mechanism for acquiring

XML-based representations of entities using the Web
service infrastructure. [...] Specifically, it defines two
operations for sending and receiving the
representation of a given resource and two operations
for creating and deleting a resource and its
corresponding representation.

www.bejug.org

Resource Access

 WS-Transfer
 This specification defines a mechanism for acquiring

XML-based representations of entities using the Web
service infrastructure. [...] Specifically, it defines two
operations for sending and receiving the
representation of a given resource and two operations
for creating and deleting a resource and its
corresponding representation.

 Sounds familiar?

www.bejug.org

Resource Access

 WS-Transfer
 This specification defines a mechanism for acquiring

XML-based representations of entities using the Web
service infrastructure. [...] Specifically, it defines two
operations for sending and receiving the
representation of a given resource and two operations
for creating and deleting a resource and its
corresponding representation.

 Sounds familiar?
 HTTP-over-SOAP-over-HTTP

www.bejug.org

Layers, we’ve got Layers

www.bejug.org

UDDI

 420-page specification
 Finding and maintaining (meta-)model objects

Publication
 save_binding
 save_business
 save_service
 save_tModel
 delete_binding
 delete_business
 delete_publisherAssertions
 delete_service
 delete_tModel
 add_publisherAssertions
 set_publisherAssertions
 get_assertionStatusReport
 get_publisherAssertions
 get_registeredInfo

Inquiry
 find_binding
 find_business
 find_relatedBusinesses
 find_service
 find_tModel
 get_bindingDetail
 get_businessDetail
 get_operationalInfo
 get_serviceDetail
 get_tModelDetail

www.bejug.org

UDDI (contd.)

 UDDI could be greatly simplified by using
plain HTTP

 It would no longer be protocol-independent
 Who cares?

 Atom (Syndication Format & Protocol) would
be a great match

See: http://www.xml.com/pub/a/ws/2002/02/06/rest.html?page=2

www.bejug.org

Binary Attachments

 In the WS-* world:
 SOAP with Attachments (MIME)
 DIME (supported by Microsoft)
 XOP/MTOM

 In a RESTful HTTP application:
 Use a link or
 provide an alternative representation

www.bejug.org

Security

 Web services security is message-based
 HTTP relies on

 transport level security (SSL/TLS)
 basic and digest authentication
 access control based on resources and

methods
 WSS concepts would be a great value-add

for HTTP-based systems

www.bejug.org

Agenda

 Introducing REST
 REST vs. Web services
 Advanced use cases
 Summary

www.bejug.org

Summary

 REST is the architecture of the world’s most
successful distributed system

 Web Services don’t use the Web, they abuse it
 HTTP is not a transport protocol
 Very often, “Just use HTTP” is the best advice
 Understanding REST will help you build better

Web-based systems

www.bejug.org

If You Only Remember One Thing…

HTTP is Good Enough.

Q&A

Thank you
for your attention!

stefan.tilkov@innoq.com
http://www.innoq.com/blog/st/

