
ENTERPRISE SOA CONFERENCE
2 4 O c t o b e r 2 0 0 6 , D e M o n t i l , A f f l i g e m

BELGIAN JAVA USER GROUP PRESENTS

www.bejug.org

REST - the Better Web
Services Model

Stefan Tilkov
Founder & Principal
Consultant
innoQ Deutschland GmbH

www.bejug.org

Overall presentation goal

Understand the value of REST and its use for
building scalable systems

www.bejug.org

Speaker’s Qualifications

 Architecting mission-critical systems since
1995

 Background with C/DCE, C++/CORBA,
Java/J2EE

 SOA Community editor at InfoQ
(www.infoq.com)

 Numerous articles and presentations on
SOA, Web services, and architecture

See: http://www.innoq.com/blog/st/

www.bejug.org

REST as an Alternative to Web Services

If your goal is to create a loosely-coupled,
evolvable, distributed system architecture
based on standards and accessible to as
many people as possible, you might think

Web services are the best option.

www.bejug.org

REST as an Alternative to Web Services

If your goal is to create a loosely-coupled,
evolvable, distributed system architecture
based on standards and accessible to as
many people as possible, you might think

Web services are the best option.

You would be wrong.

www.bejug.org

Agenda

 Introducing REST
 REST vs. Web services
 Advanced use cases
 Summary

www.bejug.org

Agenda

 Introducing REST
 REST vs. Web services
 Advanced use cases
 Summary

www.bejug.org

What is REST?

 REpresentational State Transfer
 Described by Roy Fielding in his dissertation
 One of a number of “architectural styles”
 Architectural principles underlying HTTP,

defined a posteriori

See: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

www.bejug.org

REST and HTTP

 REST is an abstraction that could be
implemented with any technology

 Best-known implementation of REST is
HTTP

 Bear this in mind when HTTP is used to
illustrate REST in the rest of this talk

http://savas.parastatidis.name/2005/03/12/505b74f7-d5d3-4b94-95d4-65129ce2bf2b.aspx

www.bejug.org

REST Key Principles

 Identifiable resources
 Uniform interface
 Stateless communication
 Resource representations
 Hypermedia

www.bejug.org

Identifiable resources

 A resource represents a real or virtual entity
- a customer, vehicle fleet, shopping cart ...

 On the Web, resources are identified by
URIs

 Each URI adds value to the Net as a whole
 Imagine Amazom.com without URIs!

www.bejug.org

Uniform interface

 Once you a know a resource’s ID, you can
interact with it using a single standard
interface

 Limited set of operations (verbs) in HTTP:
GET, PUT, POST, DELETE (+ some more)

 Pre-defined semantics allow for optimization
(e.g. caching)

www.bejug.org

Resource representations

 Resources are always accessed through a
representation

 There can be more than one
 e.g. HTML, PDF, XML

 HTTP provides content types and content
negotiation

 If possible, resources should be represented
using well-known (ideally: standardized)
content types

www.bejug.org

Stateless communication

 A server does not need to maintain state for
each client

 Massive advantages in terms of scalability
 Enforces loose coupling (no shared session

knowledge)

www.bejug.org

Hypermedia

 Possible (client) state transitions are made
explicit through links

 Enable following of part-whole, detail,
belongs-to and arbitrary other connections

 Links are (ideally) always provided by the
server, not created by the client

 Enables seamless evolution and distribution

www.bejug.org

REST Approach

 A single generic
(uniform) interface for
everything

 Generic verbs mapped
to resource semantics

 A standard application
protocol (e.g. HTTP)

www.bejug.org

Contribution to the Net’s Value

 1 URL for each resource - possibly millions
 every customer
 every order

 4-7 supported methods per resource
 GET, PUT, POST, DELETE
 TRACE, OPTIONS, HEAD

 Cacheable, addressable, linkable, ...

www.bejug.org

Designing a RESTful application

 Identify resources & design URIs
 Select formats (or create new ones)
 Identify method semantics
 Select response codes

See: http://bitworking.org/news/How_to_create_a_REST_Protocol

www.bejug.org

RESTful HTTP Advantages

 Universal support (programming languages,
operating systems, servers, ...)

 Proven scalability
 Support for redirect, caching, different

representations, resource identification, ...
 “Real” web integration for machine-2-machine

communication
 Support for XML, but also other formats

www.bejug.org

Agenda

 Introducing REST
 REST vs. Web services
 Advanced use cases
 Summary

www.bejug.org

Distributed Objects Approach

 A separate interface
(façade) for each
purpose

 As known CORBA,
DCOM, RMI/EJB

 Often used for SOA
(“CORBA w/ angle
brackets)

 Application-specific
protocol

www.bejug.org

Web Services and the Web

 WSDL/SOAP-based Web services are
“protocol independent”

 Examples:
 Microsoft supports SOAP over TCP
 Many Java implementations allow for SOAP

with proprietary JMS implementations
 HTTP is just one more “transport protocol”

www.bejug.org

Contribution to the Net’s Value

 2 URLs
 http://example.com/customerservice
 http://example.com/orderservice

 1 method
 POST

www.bejug.org

$ 64,000 Question:

 So how can one use HTTP’s features with
SOAP Web services?

www.bejug.org

Some HTTP features

 Verbs (in order of popularity):
 GET, POST
 PUT, DELETE
 HEAD, OPTIONS, TRACE

 Standardized (& meaningful) response codes
 Content negotiation
 Redirection
 Caching (incl. validation/expiry)
 Compression
 Chunking

www.bejug.org

$ 64,000 Answer

www.bejug.org

$ 64,000 Answer

 So how can one use HTTP’s features with
SOAP Web services?

www.bejug.org

$ 64,000 Answer

 So how can one use HTTP’s features with
SOAP Web services?
 Not at all. At least not without breaking protocol

independence.

www.bejug.org

$ 64,000 Answer

 So how can one use HTTP’s features with
SOAP Web services?
 Not at all. At least not without breaking protocol

independence.
 HTTP is not a “dumb” transport protocol, but

an application protocol

www.bejug.org

Web Services Issues

www.bejug.org

Web Services Issues

www.bejug.org

Web Services Issues

see http://www.innoq.com/soa/ws-standards/poster

www.bejug.org

Web Services Issues

www.bejug.org

Web Services Issues

www.bejug.org

Web Services Issues

See http://www.loudthinking.com/arc/000585.html

www.bejug.org

Web Services Issues

 “No matter how hard I try, I still think the
WS-* stack is bloated, opaque, and insanely
complex. I think it is going to be hard to
understand, hard to implement, hard to
interoperate, and hard to secure.”

www.bejug.org

Web Services Issues

 “No matter how hard I try, I still think the
WS-* stack is bloated, opaque, and insanely
complex. I think it is going to be hard to
understand, hard to implement, hard to
interoperate, and hard to secure.”

Tim Bray, co-inventor of XML

www.bejug.org

Web Services Issues

 “No matter how hard I try, I still think the
WS-* stack is bloated, opaque, and insanely
complex. I think it is going to be hard to
understand, hard to implement, hard to
interoperate, and hard to secure.”

http://www.tbray.org/ongoing/When/200x/2004/09/18/WS-Oppo
Tim Bray, co-inventor of XML

www.bejug.org

Web Services Issues

 “Show me the interoperable, full and free
implementations of WS-* in Python, Perl, Ruby
and PHP. You won’t see them, because there’s no
intrinsic value in WS-* unless you’re trying to
suck money out of your customers. Its complexity
serves as a barrier to entry at the same time that
it creates “value” that can be sold.”

www.bejug.org

Web Services Issues

 “Show me the interoperable, full and free
implementations of WS-* in Python, Perl, Ruby
and PHP. You won’t see them, because there’s no
intrinsic value in WS-* unless you’re trying to
suck money out of your customers. Its complexity
serves as a barrier to entry at the same time that
it creates “value” that can be sold.”

Mark Nottingham, formerly BEA,

www.bejug.org

Web Services Issues

 “Show me the interoperable, full and free
implementations of WS-* in Python, Perl, Ruby
and PHP. You won’t see them, because there’s no
intrinsic value in WS-* unless you’re trying to
suck money out of your customers. Its complexity
serves as a barrier to entry at the same time that
it creates “value” that can be sold.”

Mark Nottingham, formerly BEA,
former chair of the WS-Addressing WG

www.bejug.org

Web Services Issues

 “Show me the interoperable, full and free
implementations of WS-* in Python, Perl, Ruby
and PHP. You won’t see them, because there’s no
intrinsic value in WS-* unless you’re trying to
suck money out of your customers. Its complexity
serves as a barrier to entry at the same time that
it creates “value” that can be sold.”

http://www.mnot.net/blog/2006/05/10/vendors

Mark Nottingham, formerly BEA,
former chair of the WS-Addressing WG

www.bejug.org

Web Services Issues

 Web services and WS-* stack are supposed
to create a new ubiquitous protocol stack
 on top of another ubiquitous protocol stack

 WS-* tends to ignore the web
 Abstractions “leak”, anyway
 Protocol independence is a bug, not a

feature

www.bejug.org

Web Services Issues (contd.)

 The Web and the Internet architecture is
based on standard protocols

 Not only HTTP, but also SMTP, FTP,
DNS, ...

 If web services are supposed to work on
Internet scale, they should be inspired by
the Web, not by Distributed Objects

www.bejug.org

Agenda

 Introducing REST
 REST vs. Web services
 Advanced use cases
 Summary

www.bejug.org

Asynchronous Communication

 HTTP is always synchronous request/
response

 For lengthy interactions, the server should
return 202 Accepted and a URI for the
result

 Poll or pass a URI to be notified
 WS-Addressing is just URIs used badly

www.bejug.org

Reliable Messaging w/ HTTP

 First question: What does “reliable” mean?
 Often solved at the application level
 Existing proposals:

 Bill de hÓra’s HTTPLR
 Yaron Goland’s SOA-Reliability (“SOA-Rity”)

www.bejug.org

2-Phase-Commit Transactions

 The Holy Grail of Applied Computer Science
 In practice, not used as often as you think

“It hurts when I do that, Doctor.” – ”Then don’t do that!”
 2PC and loose coupling don’t work together very

well
 Compensating transactions are business logic

anyway
 A light-weight protocol could be created, but no

one has cared so far

www.bejug.org

Resource Access

www.bejug.org

Resource Access

 WS-Transfer
 This specification defines a mechanism for acquiring

XML-based representations of entities using the Web
service infrastructure. [...] Specifically, it defines two
operations for sending and receiving the
representation of a given resource and two operations
for creating and deleting a resource and its
corresponding representation.

www.bejug.org

Resource Access

 WS-Transfer
 This specification defines a mechanism for acquiring

XML-based representations of entities using the Web
service infrastructure. [...] Specifically, it defines two
operations for sending and receiving the
representation of a given resource and two operations
for creating and deleting a resource and its
corresponding representation.

 Sounds familiar?

www.bejug.org

Resource Access

 WS-Transfer
 This specification defines a mechanism for acquiring

XML-based representations of entities using the Web
service infrastructure. [...] Specifically, it defines two
operations for sending and receiving the
representation of a given resource and two operations
for creating and deleting a resource and its
corresponding representation.

 Sounds familiar?
 HTTP-over-SOAP-over-HTTP

www.bejug.org

Layers, we’ve got Layers

www.bejug.org

UDDI

 420-page specification
 Finding and maintaining (meta-)model objects

Publication
 save_binding
 save_business
 save_service
 save_tModel
 delete_binding
 delete_business
 delete_publisherAssertions
 delete_service
 delete_tModel
 add_publisherAssertions
 set_publisherAssertions
 get_assertionStatusReport
 get_publisherAssertions
 get_registeredInfo

Inquiry
 find_binding
 find_business
 find_relatedBusinesses
 find_service
 find_tModel
 get_bindingDetail
 get_businessDetail
 get_operationalInfo
 get_serviceDetail
 get_tModelDetail

www.bejug.org

UDDI (contd.)

 UDDI could be greatly simplified by using
plain HTTP

 It would no longer be protocol-independent
 Who cares?

 Atom (Syndication Format & Protocol) would
be a great match

See: http://www.xml.com/pub/a/ws/2002/02/06/rest.html?page=2

www.bejug.org

Binary Attachments

 In the WS-* world:
 SOAP with Attachments (MIME)
 DIME (supported by Microsoft)
 XOP/MTOM

 In a RESTful HTTP application:
 Use a link or
 provide an alternative representation

www.bejug.org

Security

 Web services security is message-based
 HTTP relies on

 transport level security (SSL/TLS)
 basic and digest authentication
 access control based on resources and

methods
 WSS concepts would be a great value-add

for HTTP-based systems

www.bejug.org

Agenda

 Introducing REST
 REST vs. Web services
 Advanced use cases
 Summary

www.bejug.org

Summary

 REST is the architecture of the world’s most
successful distributed system

 Web Services don’t use the Web, they abuse it
 HTTP is not a transport protocol
 Very often, “Just use HTTP” is the best advice
 Understanding REST will help you build better

Web-based systems

www.bejug.org

If You Only Remember One Thing…

HTTP is Good Enough.

Q&A

Thank you
for your attention!

stefan.tilkov@innoq.com
http://www.innoq.com/blog/st/

