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Overall presentation goal

Understand the value of REST and its use for 
building scalable systems
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Speaker’s Qualifications

 Architecting mission-critical systems since 
1995

 Background with C/DCE, C++/CORBA, 
Java/J2EE

 SOA Community editor at InfoQ 
(www.infoq.com)

 Numerous articles and presentations on 
SOA, Web services, and architecture

See: http://www.innoq.com/blog/st/
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REST as an Alternative to Web Services

If your goal is to create a loosely-coupled, 
evolvable, distributed system architecture 
based on standards and accessible to as 
many people as possible, you might think 

Web services are the best option.



www.bejug.org

REST as an Alternative to Web Services

If your goal is to create a loosely-coupled, 
evolvable, distributed system architecture 
based on standards and accessible to as 
many people as possible, you might think 

Web services are the best option.

You would be wrong.
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What is REST?

 REpresentational State Transfer
 Described by Roy Fielding in his dissertation
 One of a number of “architectural styles”
 Architectural principles underlying HTTP, 

defined a posteriori

See: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
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REST and HTTP

 REST is an abstraction that could be 
implemented with any technology

 Best-known implementation of REST is 
HTTP

 Bear this in mind when HTTP is used to 
illustrate REST in the rest of this talk

http://savas.parastatidis.name/2005/03/12/505b74f7-d5d3-4b94-95d4-65129ce2bf2b.aspx
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REST Key Principles

 Identifiable resources
 Uniform interface
 Stateless communication
 Resource representations
 Hypermedia
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Identifiable resources

 A resource represents a real or virtual entity 
- a customer, vehicle fleet, shopping cart ...

 On the Web, resources are identified by 
URIs

 Each URI adds value to the Net as a whole
 Imagine Amazom.com without URIs!
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Uniform interface

 Once you a know a resource’s ID, you can 
interact with it using a single standard 
interface

 Limited set of operations (verbs) in HTTP: 
GET, PUT, POST, DELETE (+ some more)

 Pre-defined semantics allow for optimization 
(e.g. caching)



www.bejug.org

Resource representations

 Resources are always accessed through a 
representation

 There can be more than one
 e.g. HTML, PDF, XML

 HTTP provides content types and content 
negotiation

 If possible, resources should be represented 
using well-known (ideally: standardized) 
content types
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Stateless communication

 A server does not need to maintain state for 
each client

 Massive advantages in terms of scalability
 Enforces loose coupling (no shared session 

knowledge) 
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Hypermedia

 Possible (client) state transitions are made 
explicit through links

 Enable following of part-whole, detail, 
belongs-to and arbitrary other connections

 Links are (ideally) always provided by the 
server, not created by the client

 Enables seamless evolution and distribution



www.bejug.org

REST Approach

 A single generic 
(uniform) interface for 
everything

 Generic verbs mapped 
to resource semantics

 A standard application 
protocol (e.g. HTTP)
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Contribution to the Net’s Value

 1 URL for each resource - possibly millions
 every customer
 every order

 4-7 supported methods per resource
 GET, PUT, POST, DELETE
 TRACE, OPTIONS, HEAD

 Cacheable, addressable, linkable, ...
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Designing a RESTful application

 Identify resources & design URIs
 Select formats (or create new ones)
 Identify method semantics
 Select response codes

See: http://bitworking.org/news/How_to_create_a_REST_Protocol
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RESTful HTTP Advantages

 Universal support (programming languages, 
operating systems, servers, ...)

 Proven scalability
 Support for redirect, caching, different 

representations, resource identification, ...
 “Real” web integration for machine-2-machine 

communication
 Support for XML, but also other formats
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 Introducing REST
 REST vs. Web services
 Advanced use cases
 Summary



www.bejug.org

Distributed Objects Approach

 A separate interface 
(façade) for each 
purpose

 As known CORBA, 
DCOM, RMI/EJB

 Often used for SOA 
(“CORBA w/ angle 
brackets)

 Application-specific 
protocol
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Web Services and the Web

 WSDL/SOAP-based Web services are 
“protocol independent”

 Examples:
 Microsoft supports SOAP over TCP
 Many Java implementations allow for SOAP 

with proprietary JMS implementations
 HTTP is just one more “transport protocol”
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Contribution to the Net’s Value

 2 URLs
 http://example.com/customerservice
 http://example.com/orderservice

 1 method
 POST
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$ 64,000 Question:

 So how can one use HTTP’s features with 
SOAP Web services?
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Some HTTP features

 Verbs (in order of popularity):
 GET, POST
 PUT, DELETE
 HEAD, OPTIONS, TRACE

 Standardized (& meaningful) response codes
 Content negotiation
 Redirection
 Caching (incl. validation/expiry)
 Compression
 Chunking
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 So how can one use HTTP’s features with 
SOAP Web services?
 Not at all. At least not without breaking protocol 

independence.
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$ 64,000 Answer

 So how can one use HTTP’s features with 
SOAP Web services?
 Not at all. At least not without breaking protocol 

independence.
 HTTP is not a “dumb” transport protocol, but 

an application protocol
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Web Services Issues

see http://www.innoq.com/soa/ws-standards/poster
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Web Services Issues

See http://www.loudthinking.com/arc/000585.html
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Web Services Issues

 “No matter how hard I try, I still think the 
WS-* stack is bloated, opaque, and insanely 
complex. I think it is going to be hard to 
understand, hard to implement, hard to 
interoperate, and hard to secure.”
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Web Services Issues

 “No matter how hard I try, I still think the 
WS-* stack is bloated, opaque, and insanely 
complex. I think it is going to be hard to 
understand, hard to implement, hard to 
interoperate, and hard to secure.”

http://www.tbray.org/ongoing/When/200x/2004/09/18/WS-Oppo
Tim Bray, co-inventor of XML
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Web Services Issues

 “Show me the interoperable, full and free 
implementations of WS-* in Python, Perl, Ruby 
and PHP. You won’t see them, because there’s no 
intrinsic value in WS-* unless you’re trying to 
suck money out of your customers. Its complexity 
serves as a barrier to entry at the same time that 
it creates “value” that can be sold.”
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Web Services Issues

 “Show me the interoperable, full and free 
implementations of WS-* in Python, Perl, Ruby 
and PHP. You won’t see them, because there’s no 
intrinsic value in WS-* unless you’re trying to 
suck money out of your customers. Its complexity 
serves as a barrier to entry at the same time that 
it creates “value” that can be sold.”

http://www.mnot.net/blog/2006/05/10/vendors

Mark Nottingham, formerly BEA,
former chair of the WS-Addressing WG
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Web Services Issues

 Web services and WS-* stack are supposed 
to create a new ubiquitous protocol stack
 on top of another ubiquitous protocol stack

 WS-* tends to ignore the web
 Abstractions “leak”, anyway
 Protocol independence is a bug, not a 

feature
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Web Services Issues (contd.)

 The Web and the Internet architecture is 
based on standard protocols

 Not only HTTP, but also SMTP, FTP, 
DNS, ...

 If web services are supposed to work on 
Internet scale, they should be inspired by 
the Web, not by Distributed Objects
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Asynchronous Communication

 HTTP is always synchronous request/
response

 For lengthy interactions, the server should 
return 202 Accepted and a URI for the 
result

 Poll or pass a URI to be notified
 WS-Addressing is just URIs used badly 
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Reliable Messaging w/ HTTP

 First question: What does “reliable” mean?
 Often solved at the application level
 Existing proposals:

 Bill de hÓra’s HTTPLR
 Yaron Goland’s SOA-Reliability (“SOA-Rity”)
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2-Phase-Commit Transactions

 The Holy Grail of Applied Computer Science
 In practice, not used as often as you think

“It hurts when I do that, Doctor.” – ”Then don’t do that!”
 2PC and loose coupling don’t work together very 

well
 Compensating transactions are business logic 

anyway
 A light-weight protocol could be created, but no 

one has cared so far
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Resource Access

 WS-Transfer
 This specification defines a mechanism for acquiring 

XML-based representations of entities using the Web 
service infrastructure. [...] Specifically, it defines two 
operations for sending and receiving the 
representation of a given resource and two operations 
for creating and deleting a resource and its 
corresponding representation.
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Resource Access

 WS-Transfer
 This specification defines a mechanism for acquiring 

XML-based representations of entities using the Web 
service infrastructure. [...] Specifically, it defines two 
operations for sending and receiving the 
representation of a given resource and two operations 
for creating and deleting a resource and its 
corresponding representation.

 Sounds familiar?
 HTTP-over-SOAP-over-HTTP
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Layers, we’ve got Layers
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UDDI

 420-page specification
 Finding and maintaining (meta-)model objects

Publication
 save_binding
 save_business
 save_service
 save_tModel
 delete_binding
 delete_business
 delete_publisherAssertions
 delete_service
 delete_tModel
 add_publisherAssertions
 set_publisherAssertions
 get_assertionStatusReport
 get_publisherAssertions
 get_registeredInfo

Inquiry
 find_binding
 find_business
 find_relatedBusinesses
 find_service
 find_tModel
 get_bindingDetail
 get_businessDetail
 get_operationalInfo
 get_serviceDetail
 get_tModelDetail
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UDDI (contd.)

 UDDI could be greatly simplified by using 
plain HTTP

 It would no longer be protocol-independent
 Who cares?

 Atom (Syndication Format & Protocol) would 
be a great match

See: http://www.xml.com/pub/a/ws/2002/02/06/rest.html?page=2
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Binary Attachments

 In the WS-* world:
 SOAP with Attachments (MIME)
 DIME (supported by Microsoft)
 XOP/MTOM

 In a RESTful HTTP application:
 Use a link or
 provide an alternative representation 
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Security

 Web services security is message-based
 HTTP relies on 

 transport level security (SSL/TLS)
 basic and digest authentication
 access control based on resources and 

methods
 WSS concepts would be a great value-add 

for HTTP-based systems
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Summary

 REST is the architecture of the world’s most 
successful distributed system

 Web Services don’t use the Web, they abuse it
 HTTP is not a transport protocol
 Very often, “Just use HTTP” is the best advice
 Understanding REST will help you build better 

Web-based systems
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If You Only Remember One Thing…

HTTP is Good Enough.



Q&A



Thank you 
for your attention!

stefan.tilkov@innoq.com
http://www.innoq.com/blog/st/


